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ments of the combinatorial method of moments and cu-
mulants.

* Applications of a geometric flavour: random geometric
graphs, random tessellations, excursions of random fields,

* Other techniques/tools involved: Gaussian analysis, Malli-
avin calculus of variations, Markov semigroups, Stein’s
method, Chen-Stein method, ...
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OVERVIEW, II

The Annals o Probility
1967, Vi 25, No., 1257-1280

STOCHASTIC INTEGRALS: A COMBINATORIAL APPROACH

BY GIAN-CARLO ROTA AND TIMOTHY C. WALLSTROM

Massachusetts Institute of Technology, Los Alamos National Laboratory and
Catholic University of America and Los Alamos National Laboratory

Dedicated to W. T Martin

A combinatorial definition of multiple stochastic integrals is given in
the setting of random measures. It is shown that some properties of such
stochastic integrals, formerly known to hold in special cases, are instances
of combinatorial identities on the lattice of partitions of a set. The nation of
stochastic sequences of binomial type is introduced as a generalization
of special polynomial sequences occuring in stochastic integration, such
as Hermite, Poisson-Charlier and Kravehuk polynomials. It is shown that,
identities for such polynomial sets have a common origin

1. Introduction. Few subjects in modern probability have undergone as
many disparate presentations and have been rediscovered in as many different
guises as the theory of stochastic integrals. Wiener’s homogeneous chaos [38],
Wiener and Wintner's discrete chaos [39], the Fock spaces of quantum field
theory [2), Ito's stochastic integrals [13, 14], integration over semimartingales
[24, 28, 7, 4], Segal’s tensor algebras over Hilbert spaces [34], Kakutani's
maximal Gaussian subspaces [15, 16], are only some of the theories that have
evolved in the last fifly years around one fundamental idea [23, 20, 21, 22, 25,
12, 18].

The variety of notations, ranging from Cameron and Martin’s products of
Hermite polynomials [3] to Wick's “dots” [37], has obscured the basic sim-
plicity of the underlying concept. What is more, the lack of communication
among various schools, notably between physicists aiming at the development
of nonlinear quantum field theories [36, 40] and probabilists in search of new
point processes that would not turn out to be Poisson distributions in disguise
[17, 6], have delayed and in some cases prevented a full understanding of the
possibilities of stochastic integration

These asymptotic results
are perfectly encoded by
the Rota-Wallstrom theory
(1997) of combinatorial
stochastic integration —
based on Mobius calculus.

The R-W paper is actually
a “Rosetta Stone” for an
enormous number of com-
binatorial formulae in the
literature.
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(See Roland’s course for non-commutative versions.)
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Université de Strasbourg
Séminaire de Probebilités 1974/75

TN COURS SUR LES INTEGRALES
STOCHASTIQUES
( Octobre 1974 / Décembre 1975 )

Parmi les du tous mes
vont & MM, G, Letta, M. Pratelli, C. Stricker, Yen Kia-An,
Ch, Yoeurp pour de et

La premidre rédaction a été relue par Catherine Doléans -
Dade, B. Maisonneuve, M, Weil et Ch. Yoeurp, qui y ont Te-
levé d'innombrables erreurs matérielles ou mathématiques .
Qu'ils trouvent ici l'expression de ma gratitude.

P.A, Meyer

sera prévisible, et 1'on pourra - sous des conditions d'intégrabilité &
préciser - définir

® -

[0 [Tt = [Pr0n 800
2 condition toutefois de savoir montrer que cette intégrale stochastique
ne ddpend pas du chotx accompli préodgemment. 11 reste done boacoup do
points techniques ohlcnn. Cependant, 1'étude du choix de bonnes versions
a été comencée par Catherine DOLEANS dans [20].

Maintenant, le dernier morceau : si 1'on veut que la formle (41.1)
puisse s'interpréter comme un résultat sur les intégrales miltiples, il
faut poser
w3 [ e ol = [Peval! ¢

fuy=uy e "'! iz o e

Seuf erreur de ma part, WIENER et ITO ont négligé ce terme dans leur
4étinttion de 1'intégrele stochastique double par rapport au mouvesent
brownien, (NB : K,ZAKAT n'a dit que la méthode de VIENER en tient compte ).
Passons aux intégrales d'ordre supérieur, Une intégrale triple
1 3
Jt(a ,uz.n,)u\"ax:zu"
se décompose en
- six intégrales du type /
les itérées,
- trois intégrales du type l
fuymuyeug)
Cependant, i £(u,,u,) est une some de produits a(u;)b(uy), il n'y
a aucune difficulté de mesurabilité, et 1'on peut souvent procéder per
complétion & partir de ce cas. C'est ainsi qu'on fera plus loin,

, & interpréter comme des intégra-
<up<ig)

, & interpréter comme intégrales
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T. KAILATH & A. SEGALL, 1976

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-22, NO. 3, MAY 1976 287

Orthogonal Functionals of Independent-Increment
Processes

ADRIAN SEGALL, MEMBER, IEEE, AND THOMAS KAILATH, FELLOW, IEEE

Abstract—In analogy with the Wiener-Ité theory of multiple

integrals and a set of functi of
general i i is which, in
the case of i i gonal ane

complete in the sense that every L2-f funcunnnl of the indepen-
process can be as an infinite sum of
these The are iterated inte-
grals of the baste martingales, similar to the multiple iterated
integrals of It6 and can be also thought of as being the analogs of
the powers 11,2 of the usual calculus. The analogy is made
even clearer by ing that ing the Dol Dade for-
mula for the exponential of the process in a Taylor-like series
leads again to the above elementary functionals. A recursive for-
mula for these functionals in terms of the basic martingale and
of lower order functionals is given, and several connections with
the theory of reproducing kernel Hilbert spaces associated with
independent-increment processes are obtained.

I INTRODUCTION
'ULTIPLE integrals of a Brownian motion (Wie-
ner process) and the expansion of L2-functionals
in terms of these i Is were first considered by Wie-

properties similar to the Hermite polynomials, but
Ogura [10, footnote 6] has rightly observed that they are
no longer sufficient for expanding an arbitrary L2-non-
linear functional of a Poisson process. [The difficulty
arises from several facts, one of them being that, if N, is
Poisson, fd a; dN, is no longer Poisson-distributed
even if a is a deterministic function, except in very spe-
cial cases as for example when o = 1. On the other
hand, such integrals of a Brownian motion are always
Gaussian. There are several other more important rea-
sons that will be presented in Section IIL] It, therefore,
is necessary to define more general orthogonal function-
als, and this is one of the aims of this paper.

After a brief description in Section II of the Wiener—
It6—Cameron-Martin expansion of L2-functionals of
Brownian motion, we define in Section III functionals of
general square-integrable martingales. For processes
with stationary independent increments (SII) and their
(Wiener)! integrals, they turn out to be the appropriate

lization of the Hermite polynomials associated

ner [1] and redefined in a somewhat deeper way by Ité
[2]. Ité showed that his definition immediately gave mu-
tually orthogonal terms. and he also presented their

with the Brownian motion and its Wiener integrals. In
this case, we are able to show that they also have the im-
portant property of being mutually orthogonal. The
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P. MAJOR, 1981/2014

Lecture Notes in Mathematics 849 S The Proof of ' Formula: The Diagrum Forula and Somme of s Consequences 9
L R ]
comespondin t the diagram i asimple way. Thisyilds tht i the presentcase
the function hy defined in (5.2) can be written in the form
yleian,xe) = [ as,xo)aen s hs(—e,32,50,—35,53)
" —x3,x4) G dx<) G dxe) G dx1) G dxs) Gl dx).

Péter Major

Multiple .

respect to dables x t
such a vertex of from which

dge starts. Th
the diagram to the sum at the right-hand side of diagram formula equals 4176(hy)
with this function .
Let me remark that we hed some freedom in choosing the enumeration of the

vertices of the disgram 7. Thus e.g. we could have enumerated the four vertices of
the diagram from which no edge starts with the numbers 1,2, 3 and 4 in an arbitrary
order. A different indexation of these vertices would lead to a different function
Iy whose Wiener- the same. T have chosen that enumeration of the
veties which seemied {0 be the most natual fo me.

o Naturally the product of two Wiener-Ito integrals can be similarly calculated,
Second Edition but the notation will be a bit simpler n this case. 1 briefly show such an example,
because in the proof o Theorem 5.3 we shall be mainly itereted i the product of
two Wiener1th integrals.
Example 2. Take two Winer 1 negals with kenel uncions i = (5, 3,5) €
and hy =i 5 3la()3c(k2)
i the help of e dingram Tormula.

1(35),and iy calulste
@ . the kernel function i of the . Let us consider
Sprmger i et ey 1(3.5) which containg the edues ((2 1), (3.2)) and
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D. SURGAILIS, 1984

ON MULTIPLE POISSON STOCHASTIC INTEGRALS
AND ASSOCIATED MARKOV SEMIGROUPS

BY

D. SURGAILIS (ViLNius)

Abstract. Multiple stochastic integrals (m.s.i.)
4Of) = [ (1 oo ¥)qE@XY)...q(dx), n=1,2,...,
n

with respect to the centered Poisson random measure g(dx), E [q(dx)]
=0, E[(g(dx)’] = m(dx), are discussed, where (X, m) is a measurable
space. A “diagram formula” for evaluation of products of (Poisson)
ms.. as sums of m.s.i. is derived. With a given contraction semigroup
A, t >0, in I(X) we associate a semigroup I'(4,), t > 0, in I>(&) by
the relation
FA)"L®..81) = ¢ AN ® ... ®4L)

and prove that I'(4,), ¢ > 0, is Markov if and only if 4, ¢t >0, is
doubly sub-Markov; the corresponding Markov process can be de-
scribed as time evolution (with immigration) of the (infinite) system of
particles, each moving independently according to 4,, > 0.

0. Introduction. It is well known that the analysis of the structure of (%) -
spaces arising from the Gaussian and the Poissonian white noises has certain
common features, the main one being the existence of an orthogonal system of

ials” (“orthogonal poly ial chaos”) defined by means of multiple
stochastic integrals (m.s.i.). In the Gaussian case, such integrals were first
discussed by Wiener [15] and Ito [4] (on this ground called also Wiener - Ito
integrals), and in the Poissonian case by Ito [5]. M.s.i. of both types have been
applied to deal with non-linear problems in engineering (see, e.g., [16], [9],
[10]), while “Gaussian” m.s.i. appeared to play a major role in many areas of
physics (e.g., field theory [11], statistical physics [1],

[12], statistical turbulence [8], etc.). This physical interest led to a number of
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SRATL JOURNAL O MATARIATICS 168 (200 15140

RANDOM COMPLEX ZEROES, I.
ASYMPTOTIC NORMALITY

Muiat Sonn’ Axp Bonus Tsinitsox
Scool of Mlhmatis, 4 A vic Uiy
Ramat s, Td Auk 09975, oo
emal: s Bl ird@t o acl, .

it/ i/

Astsor
Wo comsider thres ol {elipic, Lt a5 hypusbolc) of Gaussisn:
o, analtic facions disingished by nviaace o Wi zeoes
dstsbution Asymptatic sormally i peove. for smooth fnctonsl
e staisics) of the s of secors.

Introduction and the main result
Zeroes of random polymomials and other nalytic functions w erestudied by
mathematicians and physicists nder ¥arions assunptions on random ceffi-
cients, One cassof models ntroduced not long ago by Bogomelny. Bohigas and
Lot [5, 6] Kostlan [16, and St and Swale 23] hos  emarkably unique
wnitary i ariance:

. indhed it has no true froedom at all. T is (satistically) uigue

jsson process’, or “the thermal (Dlack
feld”are unique..."

in the same suse as ‘the P
body) cleciromag
Haumay [13, p. 1757]

Follawing Hanay [12], we use the term “chaotic analyti ero points” (CAZP,
for short), We ansider lere three CAZP models: the eliptic CAZP, the flat
CAZP, nd the byperbolic CAZP called by Lebocf (17, p. 654] SU®). Wi, and

* Supporéed by the lsrel Seimnor Foundsion of the Israel Arademy of Scinos
and Humaites,
Roaived Jan vary 21, 2001

u AL SODIN AND B. TSIRELSON e Mat,

Proof of (2.16); First, we make another reduction of the diagtan and define
pvertex graph with smple edges which @uple the vertioss i and j if and ouly
if at least one of the pirs (1.7) or (7.i) was coupled in the original Gageams
(without taking into accont the multplicities of the original coupling). We
denote the reduced dingram by 7", For example:

I
‘I I‘
a diagram, its reduction,
Then
@ Wt tl< I lott)]

(et
where the prodhuct s tak enoser all edges of 7. We have to estimate from
abo v the integral of [V5] overT?. Replacing V5| by its upper bound (2.17), we
obtain the i tegral whids factorizes into the product of integrals described 1y
connected components o the diagraun °*

v
can be & complicated graph — anyway, we can always turn this graph into @
tree with m vertioes b y deleting some edges (this procedure only increases the
integral we are estimating). Having a tree, we choos: a vertex belonging fo only
one edge and integrate it ont, which giv es the factor (i J; [pa(s.0ld(1))
and the rest of the tree whidh is a new tree with m — 1 vertices. By indhction,
an yim-vertes tree deseribes the integral whidh does not exceed

(an o)™

Now, suppose the reduced diagram 7 has k conmected components and the
i-th component has m; vertices!® Then the right-hand sick of (2.17) ntegrated
owr T7 does not exceed

(] \p,(s,owm)m'_m o (o[ |pﬂ(s,z>wam)m

Since the dingram 7 is rcegalar, £ < p/2 and we get (2.16).

10 Observe that iy ++++ 1,
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A central limit theorem and higher order results
for the angular bispectrum

Domenico Marinucei
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Abstract

gical data. Tn th

& detailed investigation for the as behavior of coefficients arising in matrix
representation theory for the group of rotations SO(3).

Keywords ~ Spherical random fields - Angular bispectrum - Central limit theorem -
‘Higher order approximations.

Primary: 60G60;
62M15 - 62M40

1 Introduction

Let T(9, p) be a random field indexed by the unit sphere 52,0 < 0 < 7 and 0 <
@< 76,0) ite vari it

i d isotropic, i

invariant group of

M. W Baldoni and P, Bald:fordisussions on an arlie verson.

D. Masioucei ()
‘Department of Mathemates, University of Rome “Tor Vergaa”,
Vi della Ricerca Sendica 1, 0013 Rome, Tuly.

mail: marinuce @ mat uniroma2.t

96 D Marinucei

P —
bt 7

N

%

S

!
Lok
AVave

wherer; € R;
uuu(n,h).J # 7 (indeed those. md:x:s g s s\whl.nnl.((n.k:). o ave boen
summed up internally). For instance, for

e o o
po= 3 3 T )i
=, 022, AL
i b

o ta ta
< ksl )sm) 0.

my mp2

In Fig. 1, we provide a graph with cight nodes #(R) = § (right), and then (lef) we
partition it with g ”(Kl)—”(Rz) 4; the noc dennkxmhbd.ledwim.ein:l:.
the nodes i the edges in y; and i line whil
those in y12 are dashed. Here we have 3 + 3 = 6 internal sums and six external ones.
Assume now that ¥ does not include any loop, for i = 8. We shall show
hat

.
1D = [T 1 Xrinl an
1

‘where |I.|| denotes Euclidean norm, and

I%zinll = TT @ex+D""2 <@ min e+ HE&I-D az

(edden fediien

note that if y; does not include any loop the number of edges it contains must be
identically equal to #(R)) — 1, where #() denotes the cardinality of a set. Let us
con first. T p n that X, @
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Abstract

the plane. We study i i
of the argument of the Gavssian entire function along planar curves. We introduce an inner
product on finite formal linear combinations of curves (with real coefficients), that we call

asymplotic normality of fluctuations.

Keywords Zeroes of holomorphic functions - Gaussian processes - Point processes

Let (&) be iables (that is, each
4, has density Le~'< with respect to the Lebesgue measure on the plane), and define the
Gaussian entire function ion by

&,
1) -;;.ﬁ. 0]

1 Buckley M.Sodin
1 1
i i 1 3
2 2
2 2
3 3 o
3 2 "4
4 1

Fig.6 A dingram and its reduced diagram

We now fix y and P72 and make a reduction o allow us t0 estima this quantity.
diagram D we form the reduced diagram D* (see Fig. 6) with P vertices
(abeled 1t ) such tha

o Foreach 1 <r,s < P there s at most one edge (7 ).
o (r5) € (DY) If () € e(D) or (5,7) € e(D).

Inother D* from 2, vertices labelled r or 7 for
each r, and ignoring the multiplicity of the edges of the resultant diagram. We decompose

o(n.

into n connected components that contain  vertices and contribute £, factors to Jp 2,
Notice that < & since D is irregular, and that

pa

‘Morcover, since

vol= ] eot-So-afis ] ool-5-zf

(r9)ee(D) (r)ee(De)
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* My view of the Rota-Wallstrom theory has formed while
working with M.S. Taqqu (Boston).

* The approach to probabilistic approximations via variational
tools has been principally developed in collaboration with L.
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Giovanni Peccati
Murad 8. Tagqu
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Lattice of partitions and elements of Mobius calculus.
Cumulants

Random measures and the Rota-Wallstrom Theory
Product and diagram formulae

Limit theorems

Geometric application (blackboard /handout)
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THE PLAN

Lattice of partitions and elements of Mobius calculus.
Cumulants

Random measures and the Rota-Wallstrom Theory
Product and diagram formulae

Limit theorems

SRS L A e

Geometric application (blackboard /handout)

From now on: everything random lives on an adequate triple

"(Q, F,P)" (E = expectation)
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PART 1:
LATTICE OF PARTITIONS AND MOBIUS CALCULUS
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* Given n > 1, we write [n] = {1,..,n}. P, is the poset of
partitions of [n], with partial order relation (by inclusion of
blocks) denoted by <.

T = ‘{bl,..., b/‘} - /P,,

has |7r| := r blocks. If b C [n], write P(b) := poset of
partitions of b.

x Write i ~ jif i, j are in the same block of 7.
*x The minimal and maximal partitions of P, are, respectively,

N — \ [17) 1 — J
0= {{1f/"'/1llf}’ 1= 1[”}}.
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has |7t| := r blocks.
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partitions of [n], with partial order relation (by inclusion of
blocks) denoted by <. A partition

T = {b], ceey br} € Pn

has |7t| := r blocks. If b C [n], write P(b) := poset of
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* Write i ~ jif i,j are in the same block of 7.

* The minimal and maximal partitions of P, are, respectively,

0={{1}, .. {n}}, 1={[n]}.
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* There are only five partitions: 1, 0,

m = {1}, {1,2}}, m = {{1,3},{2}}, ms = {{1,2}, {3}}.

* One has

* However,
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* There are only five partitions: 1, 0,

m = {1}, {1,2}}, m = {{1,3},{2}}, ms = {{1,2}, {3}}.

*x One has

>
A
—>

<1, i=1,23.

* However,

i Ky, 1]
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* The poset P, is actually a lattice, since one can define two
operations of meet and join, from P, x P, onto P,, written
respectively

(o,m) — oAT
(o,m) — oV
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LATTICE STRUCTURE

* The poset P, is actually a lattice, since one can define two
operations of meet and join, from P, x P, onto P, written
respectively

(o,m) — oAT
(o,m) — oV
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operations of meet and join, from P, x P, onto P, written
respectively

(o,m) — oAT
(o,m) — oV

* The meet o A 77 is uniquely characterized by the properties:

AoAnnt<0o,m,and (i) if y <X 0,7, then vy < 0 A 1.
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o= {{1,2},{3}, {4}}

= {{1},{2,3},{4}}

cAmr=0

ovr={{1,23},{4}}



* The segment associated with two partitions o < 7 is

o, :={p€ePr:c<xp=<m},
in such a way that [0, 1] = P,.
x The class A(c, 1) of the segment [o, 7] is the formal string
Alo, ) := (11272« - |o|"¥),

indicating that 7 has exactly r; blocks containing exactly i
blocks of ¢.

* A(0, ) can be regarded as a partition of the integer |o|:

1]‘*1 + 21’2 + -+ /‘m

ol =lol, ri+-4rp =l
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* The class A(c, 7t) of the segment [c, 77| is the formal string
Alo, ) := (11272« - |o|"W),

indicating that 7t has exactly r; blocks containing exactly i
blocks of ¢.
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*x Ao, 1) = (1920 - - |o|1).

* A(0,0) = (11272 ... n"™), where r; := # blocks of ¢ of size i.

* Casen =5,
U= {{1},{2}, {3},{4,5}}, T = {{1},{2,3,4,5}}-
Then,

o, 7] ={0o; ;
{11}3,{2,4,5}, {3} }; ; 7}
and A(o, 1) = (1'2°3149),
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* Ao, 1) = (192 |o|").

x A(0,0) = (1122 - - . n'), where r; := # blocks of ¢ of size i.

* Casen =5,
o={{1},{2}, {3}, {4 5}}, m={{1},{2,3,4,5}}.
Then,

o, 7] ={0o; .

{{11,12,4,5}, {3} }; ; 7T}

and A(c, ) = (11203149).
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x A(0,0) = (1122 - - . n'), where r; := # blocks of ¢ of size i.

*x Casen =5,

o={{1},{2},{3},{4,5}}, m={{1},{2,3,4,5}}.
Then,

o 7] = {o; {{1},{2},{3,4,5}};
{{1},{2,4,5}, {3}}; {{1},{2,3},{4,5}}; m}

and A(c, ) = (112°3149).
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* The incidence algebra of P, is the class of all functions
f P x Py — C such that

flo, ) = f(o, n)l{asn}'

*x Two distinguished elements of Z,, (zeta function and iden-
tity for x):

{(o,m) = 1(p<n), and 6(c, ) = U

*x Convolution on the incidence algebra Z, of P, is

fxglo,m) = Z f(o,0)g(0, ),

with 2 = 0.
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MOBIUS FUNCTIONS, I

* The incidence algebra of P, is the class of all functions
f Py x Py — C such that

f((f, m) = f((f, n)l{asn}'

* Two distinguished elements of Z,, (zeta function and iden-
tity for x):

g(a, 7'[) = 1{0_4”}, and 5(0’, 7'[) = l{azn}'
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* The incidence algebra of P, is the class of all functions
f Py x Py — C such that

f((f, m) = f((f, ”)1{U<n}'

* Two distinguished elements of Z,, (zeta function and iden-
tity for x):

g(a, 7'[) = 1{0_4”}, and 5(0’, 7'[) = l{azn}'

* Convolution on the incidence algebra Z,, of P, is

frglo,m)= ) flo,0g(e ),

o€(o, 7|

with Xy = 0.
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MOBIUS FUNCTION, II

* The associated Mobius function [i.e., the two-sided inverse
of { on (Z,, )] is denoted by p (-, -): it is characerized by the
relations: (a) u(7t, ) =1, (b)

u(o — Y uloo)=— Y, ulen), oc=<m,

T<0=T T<o=xT

and (c) u(o, ) = 0 otherwise.
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MOBIUS FUNCTION, II

* The associated Mobius function [i.e., the two-sided inverse
of { on (Z,, )] is denoted by p (-, -): it is characerized by the
relations: (a) u(7t, ) =1, (b)

u(o — Y uloo)=— Y, ulen), oc=<m,

T<0=T T<o=xT

and (c) u(o, ) = 0 otherwise.
* For partitions ¢ < 7 such that m = |o| > || = 1, the
function y is explicitly given by

plo, ) = (—1)" @5 ((m = 1™

where A(o, 1) = (112"2...m"™) is the class of [0, 7t]. In

particular, (7, m) = 1, and ],t(a,i) = (=1)lI=1(|o| —1)!
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MOBIUS FUNCTION, III

A small number of (elementary) properties of u are used below:

(i) Inversion:

F(m) = Y G(0)ifand onlyif G(1) = Y p(o, m)F(
o< o7

F(m) = Y} G(o)ifandonlyif G() = ) u(m,o)F
o= o=t

(ii) On segments :

Z ulo,m) =Y, ulc,0) =6(o,m).

0€lo,m| QE[O’,TL’]
(iii) Mobius functions are preserved by isomorphisms.

(iv) Mobius functions factorize on lattice products.
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* Consider a partition with the form

= {{Lemd L m ),

e {m+ e+ 1, m —i—nk}}

(m+--+nm=n
* Solutions to the equation o A T = 0 have a representation
in terms of non-flat diagrams.

* Solutions to the equation ¢ V 7* = 1 have a representation
in terms of connected diagrams.
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FLAT AND CONNECTED DIAGRAMS

* Consider a partition with the form

[ {{1,...,7’11}, {n1 + 1,...,7’11 +7’12},
e {m+ e+ 1, m —|—nk}}
(m1+ -+ m =)

* Solutions to the equation o A 77* = 0 have a representation
in terms of non-flat diagrams.
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FLAT AND CONNECTED DIAGRAMS

* Consider a partition with the form

[ {{1,...,711},{111—1—1,...,711—l—nz},

e {1+ —|—1,...,n1—|—---+nk}}

(4 = )
* Solutions to the equation o A 77* = 0 have a representation
in terms of non-flat diagrams.

* Solutions to the equation ¢V 77* = 1 have a representation
in terms of connected diagrams.
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[ J

2 3

e o

4 5 6

B

m = {{1},{2,3},{4,56}}
c={{1,24},{3,5},{6}}, o={{1,24},{3,56}}
Ao =0

Ao ={{1},{2},{3}, {4}, {5,6}} #0
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1

: B
2 3

e o

4 5 6

B

m = {{1},{2,3},{4,5,6}}
c={{1,2,4},{3,5},{6}}, o= {{1},{24},{3,56}}
mVvoe=1

™V =1{{1},{2,3,4,5,6}} #1
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PART 2:
CUMULANTS
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x For a fixed n > 1, we consider a vector of r.v.s X[n] =
(X1, Xp) st IE|X]~|” <oo,j=1,..,n.

x For every b = {ji, ..., jx} C [n],

Xp = (Xj, . Xj,), X=X x - x X,

k
exp {i Z z‘,X,»}
(=1

jir e
and

gXLu(fl/ ceey f/\’) = E
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x For a fixed n > 1, we consider a vector of r.v.s X[n] =
(X1, Xp) st IE|X]~|” <oo,j=1,..,n.

* Forevery b = {ji1,.... i} C [n],
Xp = (X, X)), X=X x - x X,

and

gxb(tl, ey tk) =

k
exp {i Z th]-Z}
=1
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* Define the cumulant x (X;) of X, as

) o~
X (Xb) = (—Z)k atl—atkloggxb (tl,..., tk) |t1="'=tk=0 .

x For a single random variable X s.t. E|X|" < oo, the nth
cumulant is

n

A\ C
xXn(X) = x(X, ..., X) := (—i) YT
gz

log ¢x(z) |2=0,

and consequently x1(X) = E(X).
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CUMULANTS

* Define the cumulant x (X;) of X, as

. ok
X(Xb) = (—z)kmloggxb (tl,. o ) ’t17 =4=0 -

* For a single random variable X s.t. E|X|" < oo, the nth
cumulant is

() = X%, X) 1= (1) 2 105 8x() oo,

and consequently x1(X) = E(X).
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* The mapping X;, — x (X;) is homogeneous:

X (01Xj1, very kajk) =010 X (Xb),'

x the application X, — x (Xp) is invariant with respect to
permutations of b;

x if the vector X, has the form X, = Xy U X, with b/, 0" # &,
V' Nb'" = & and X and Xp» independent, then x (X;) = 0;

*x if Y = {Y;:i € I} is a Gaussian family and if X is a vector
obtained by juxtaposing n > 3 elements of Y (with possible
repetitions), then x (X) = 0.
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FIRST PROPERTIES

* The mapping X;, — x (X;) is homogeneous:
X (01X, X)) = 01 v x (Xp)

* the application X, — x (X)) is invariant with respect to
permutations of b;

x if the vector X; has the form X, = Xy U Xy, with b/, 0" # &,
' Nb" = @ and Xy and X;» independent, then x (X;) = 0;
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FIRST PROPERTIES

* The mapping X;, — x (X;) is homogeneous:
X (01X, X)) = 01 v x (Xp)

* the application X, — x (X)) is invariant with respect to
permutations of b;

x if the vector X; has the form X, = Xy U Xy, with b/, 0" # &,
' Nb" = @ and Xy and X;» independent, then x (X;) = 0;

% if Y = {Y; :i € I} is a Gaussian family and if X is a vector
obtained by juxtaposing n > 3 elements of Y (with possible
repetitions), then x (X) = 0.
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LEONOV-SHIRYAEV RELATIONS

Theorem (Leonov & Shiryaev, 1959)
For every b C [n],
1.

E(X") = Y x(Xp) - x(Xp,);
t={b1,.. b }€P(b)

x(Xp) = Y, (DTN DIE(XT) - E(XW).
o={ay,...,.a, }€P(b)
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LEONOV-SHIRYAEV RELATIONS

Theorem (Leonov & Shiryaev, 1959)
For every b C [n],

1.
E(X") = Yoo x(Xe) e x(Xe,);
={by, b }€P (D)
2.
x(Xp) = ) (1) (r — 1)IE(X™) - - - E(X%).
o={ay,...a, }€P(b)

Remark. In the case X, = (X, ..., X) (n times):
]E(Xn) = ZU:{b],...,bj}EPn X‘b]| (X) Xooee X X|bj‘ (X) "
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SKETCH OF PROOF

By Leibniz formula,

i)" D" (Dloggx - gx) (0)

_ ! <1’l - 1) (_1)s+1 Ds-H 1Oggx (O)

S

}(ﬂ
= (—1)" D"gx (0)
(=)

x (=i)" 1 D" Mog gx (0)

n—1 n—1
Z < s )Xerl (X)E (X"_S_1> , and then use recursion.
s=0

Point 2 is Mobius inversion ! O
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’ X(X,Y) = E(XY) — E(X)E(Y) = Cov(X,Y)

x3(X) = 2E(X)® — 3E(X)E(X?) + E(X®)

xa(X) = —6E(X)* +121E(x) lE(Xz) — 3E(X?)?
4E(X)E(X°) +E(X*)
(If E(X) = 0, then x4(X) = E(X*) — 3E(X?)?)
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* Let ITbe a Poisson random variable with parameter 1 (that
is, P [IT = k] = e~ !/k!). Then, g (t) = exp [¢" — 1], so that
xn(II)=1,n> 1.

[t follows that

%

E (IT") = |Py| = B, (the nth Bell number),

*

This is equivalent to the “Dobinsky formula” (1887)

ill— n>1.

k=0

*

Taking an arbitrary parameter A > 0 generates the Touchard
polynomials, whose coefficients are the Stirling numbers of
the second kind. Also,

E [(IT— 1)"] = #{partitions of [n] with no singletons} .
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POISSON, BELL AND TOUCHARD

* Let ITbe a Poisson random variable with parameter 1 (that
is, P [IT = k] = e~ 1/k!). Then, gr1 () = exp [¢! — 1], so that
xn(II)=1,n> 1.
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E (IT") = |Py| = B, (the nth Bell number),
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* Let (Gy, ..., Gy) be a centered Gaussian vector with covari-
ance matrix {C(i,j) : i,j =1,...,d}.

*x One has that E[G; - - - G4] = 0if d is odd, and
/2
E[Gi - G4 = ). [ I je),

Hivi}oAiasogasny yeMy =1

where M is the collection of all matchings of [d] (a match-
ing is a partition with blocks of size 2).

* In particular, if G ~ .4(0,0?),
E[G*'] = 0" | My,| = ¢ (2n — 1)!.
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FEYNMAN FORMULA
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SHORT COMMUNICATIONS

ON A METHOD OF CALCULATION OF SEMI-INVARIANTS

V. P. LEONOV and A. N. SHIRYAEV

(Tvansiated by James R. Brown)

Methods of caleulation of leading moments and Semi-invariants in the stady of non-linear
transformations of random processes are rather complicated (cf., for instance,

13, [2). [3] con-

that in some cases,

of the polynom Q(E) on s sg of the process § (1),

the process ) are found by simply cancelling the superfluous terms according to a determined
rule. Our theorem in 52 shows that this remark contitues to hold even under considerably more

general assumption:
‘The present or vas caid out under th dircton of A,

received in the course of its soluti

1. Introduction

Let a random vector ) = iy, + - 74} be given. Let us look at its characteristic function

= Meile e +a ).

Pyl

We shall assume that Mg < .71 Then the mixed moments M{f}t
< . Tt follows that the partil derivatives

by oy such that vy 20, m s e

b

T e
g o)

. Kolmogorov, to whom the
anthors express their gratitude for sing the problem as well as for numerons valuable directions

o} exist for all

On a method of calexlation of semi-invarianis 321

‘We shall calculate s, by formula (V.d). In the example we are looking at the set D consists of the
‘pairs of integers (i, 1) such that 1 =i = &, j = 1, 2; table (4) has the form

wmy .2
@y 22
*1) k2

ay = 1,if v = £(D) and ay = 0 if v % (D). Formula (IV.d) assumes the form

I Y
§o9,-0”
A
Since & i a vestor with gaussian distribution, (D) % 0 only when D, consists of one or two
points.
Let ¢ and ¢ equal either 1 or 2, while ¢; 2 ;. Using Remark 5 we may show that the par-
tition D = UL, , is indecomposable if and only if one of the ollowing o cases holds:
By = () Gl D= {0
Dpy = (Mg o) (o) D

EARCH
[AANTS

D=l el D= (Gp @ lpeghs Dy = (g . Gaead) o
Dy = {lipegs ) v el Diwa = (i )

where (i, iz, i) is some permutation of the numbers 1,2, -+~ k. For the case &
iy=, 1 2 theso partitions are illustrated in wum 1 and 2, respectively.

oy =
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Austral J. Statist., 25 (2), 1983, 378-388

CUMULANTS AND PARTITION LATTICES'

T. P. Seeep
CSIRO Division of Mathematics and Statistics, Canberra

Summary

‘The (joint) cumulant of a set of (possibly coincident) random
variables is defined as an alternating sum of moments with appropriate
integral coefficients. By exploiting properties of the Mobius function of
a partition lattice some basic results concerning cumulants are derived
and illustrations of their use given.

1. Introduction

Cumulants were first defined and studied by the Danish scientist T.
N. Thiele (1889, 1897, 1899) who called them half-invariants (halvin~
varianter); see Hald (1981) for a review of this early work. The ready
interpretability and descriptive power of the first few cumulants was
evident to Thiele, as was their role in studying non-linear functions of
random variables, and these aspects of their use have continued to be
important to the present day, see Brillinger (1975, Section 2.3). In a
sense which it is hard to make precise, all of the important aspects of
(joint) distributions seem to be simpler functions of cumulants than of
anything else, and they are also the natural tools with which transfor-
‘mations (linear or not) of systems of random variables (independent or
not) can be studied when exact distribution theory is out of the
question.

T. SPEED, 1983 ; G.-C. ROTA AND J. SHEN, 2000

On the Combinatorics of Cumulants
Gian-Carlo Rota

Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139

and

Jianhong Shen
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
‘E-mail: jhshen @math umn.edu
Communicated by the Managing Editors
Received July 26, 1999

DEDICATED TO THE MEMORY OF GIAN-CARLO ROTA

We study cumulants by Umbral Caloulus. Various formulae expressing cumulants
by umbral functions are established. Links to invariant theory, symmetric functions,
and binomial sequences are made.  © 2000 Academic Press
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PART 3:
RANDOM MEASURES
AND THE
ROTA-WALLSTROM THEORY
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* Let (Z, Z) be a Polish space, endowed with its Borel o-field.
Note that {x} € Z, forallx € Z.

* Fixn > 2. Given 7t € P,,, we set

Z5 = {(z1,...,2p) € Z" : z; = z;ifand only if i ~ j}

Tt

where i ~ j=“i and j are in the same block of 7t (such a
set is measurable).

* Given C € Z", we set C;; = C N Z]. Trivially,

C = Ugrep,Cr  (disjoint union).
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APPROACHING ROTA-WALLSTROM: DIAGONALS

* Let (Z, Z) be a Polish space, endowed with its Borel o-field.
Note that {x} € Z, forall x € Z.

* Fixn > 2. Given 7t € P, we set

Zh = {(z1,..,2n) € Z" : z; = zjif and only if i ~ j}

where i ~, j ="i and j are in the same block of 77 (such a
set is measurable).
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* Let v be a o-finite non-atomic positive measure on (Z, Z),
andset Z, :={A € Z:v(A) < o0}

*x A Gaussian measure G = {G(A) : A € Z,} with inten-
sity v is a centered Gaussian family such that, for A,B € Z,,

E[G(A)G(B)] = v(AN B).

Recall:

P(G(A) € W) / e T/

\/2—(1

* Such an object exists !
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GAUSSIAN RANDOM MEASURES

* Let v be a o-finite non-atomic positive measure on (Z, Z),
and set Z, ;= {A € Z:v(A) < co}.

* A Gaussian measure G = {G(A) : A € Z,} with inten-
sity v is a centered Gaussian family such that, for A, B € Z,,

E[G(A)G(B)] = v(ANB).

Recall:

e X 2/2v(A
P(G( / \/W
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GAUSSIAN RANDOM MEASURES

* Let v be a o-finite non-atomic positive measure on (Z, Z),
and set Z, ;= {A € Z:v(A) < co}.

* A Gaussian measure G = {G(A) : A € Z,} with inten-
sity v is a centered Gaussian family such that, for A, B € Z,,

E[G(A)G(B)] = v(ANB).
Recall: e
P(G( / W /2mtv(A

* Such an object exists !
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POISSON RANDOM MEASURES

* A centered Poisson measure 7 = {#j(A) : A € Z,}isa
collection of random variables s.t.: (a) if AN B = @, then
#1(A),17(B) are independent, and (b) for every A € Z,, ij(A)
is centered Poisson with parameter v(A). We call v the
intensity (or “control”) of 77.
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POISSON RANDOM MEASURES

* A centered Poisson measure 7 = {#j(A) : A € Z,}isa
collection of random variables s.t.: (a) if AN B = @, then
#1(A),17(B) are independent, and (b) for every A € Z,, ij(A)
is centered Poisson with parameter v(A). We call v the
intensity (or “control”) of 77.

* Such an object exists and defines a simple random point
measure on (Z, Z).

* Write M to indicate either G or 7.
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* These are examples of independently scattered (or com-
pletely random) measures (see Kingman, 1967) — to which
the whole theory basically applies.
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REMARKS

* These are examples of independently scattered (or com-
pletely random) measures (see Kingman, 1967) — to which
the whole theory basically applies.

* We regard M as a non-atomic Hilbert-space valued mea-
sure, with values in a L? space. In particular, M is o-additive:
for A; disjointand A = U;A;,

M(A) =Y _ M(A),

i>1

with convergence in L2(IP); also, M({x}) = 0, a.s.-P for
every x € Z.
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REMARKS

* These are examples of independently scattered (or com-
pletely random) measures (see Kingman, 1967) — to which
the whole theory basically applies.

* We regard M as a non-atomic Hilbert-space valued mea-
sure, with values in a L? space. In particular, M is o-additive:
for A; disjointand A = U;A;,

M(A) =Y _ M(A),
i>1
with convergence in L2(IP); also, M({x}) = 0, a.s.-P for
every x € Z.

* When Z = Ry and v = Lebesgue, then W; := G([0,t]) is a
Brownian motion (up to selecting a continuous modifica-
tion).
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STOCHASTIC INTEGRALS OF ORDER ONE

x Integrating a function f : Z — R € L?(v) is an easy task,
solved by N. Wiener in the 30s.
(1) Firstconsider simple functions of the type f(z) = Y1 ; ci14,(z2),
A; € Z,, and set

M) = [ femd) = Z; X M(4)).

(2) Observe that, for every f, g simple,

E[(F) x M) = (f,8) 12w

(3) Extend the definition to every f € L?(v) by a density argu-
ment. The L? closed vector space obtained in this way is the
first Wiener chaos associated with M.
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x Integrating a function f : Z — R € L?(v) is an easy task,
solved by N. Wiener in the 30s.

(1) Firstconsider simple functions of the type f(z) = Y1 ; ci14,(z2),

A; € Z,,and set
M) = [ femd) = Z; X M(4)).

(2) Observe that, for every f, g simple,

E[(F) x M) = (f,8) 12w

(3) Extend the definition to every f € L?(v) by a density argu-
ment. The L? closed vector space obtained in this way is the
first Wiener chaos associated with M.
* Things are more delicate when dealing with multiple inte-
grals. Main difficulty: M is a non-atomic vector-valued measure
charging diagonals.
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M 1S GOOD!

Theorem (Engel, 1982)

The measure M is “good”: for every n > 2, there exists a unique
collection of random variables

M" = {M"(C):C € ZI'"} c L*(P)
such that:

1. M" is o-additive [in L*(IP)];
2. for every cylinder C = Ay x --- X A, € Z],

M"(C) = M(A7) x -+ x M(Ay,).
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* We can now define the following stochastic measures: for
every mt € P,and C € Z

ML(C) := M"(Cr), ML, :=)_ M.

o=
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STOCHASTIC AND DIAGONAL MEASURES

* We can now define the following stochastic measures: for
every 71 € Pyand C € Z}/

ML(C) := M"(Cx), Ml :=Y M.

O=7T

* For n > 2, the nth diagonal measure associated with M is
given by: for every A € Z, AM(A) = M(A), and

AY(A) = MJ(Ax - x A).
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FIRST PROPERTIES

* By Mobius inversion,

M=) u(m, o) ML,.

O=TT

* This relation provides an implicit description of the mea-
sures M, via the relation:

b
ML (A XX Ay) = bl_[Mi ‘(XiebAi)
en

= [T (NiesA).

ber
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GAUSS AND POISSON ARE MULTIPLICATIVE

Theorem (Rota and Wallstrom, 1997)

For every n > 2 and every 7t € Py, the product measure M" is
multiplicative: for every rectangle in Z!,

E[My (A1 x - x An)] = [ TE[A} (NjesA))].)

ber
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* | AZ = vand AL = 0 for every n > 2.

(Idea of the proof: take a sequence of finite partitions {A:ﬁm He>1
of A, such that max; L’(A (k) ) — 0. Then prove that

ZGM}“)Z A), and Zc Nt 50, Vn > 2.)

j =1 =1 +vforeveryn >2. ‘

(this can be deduced using an w-by-w argument).
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COMPUTATION OF DIAGONAL MEASURES

* | AZ =vand AL = 0 for every n > 2.

(Idea of the proof: take a sequence of finite partitions {Afk) Fes1
of A, such that max; V(Al(k)) — 0. Then prove that

Y G(AM)? 5 v(A), and Y G(AN)" =0, v > 2.)
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THE PURELY NON-DIAGONAL MEASURE

Theorem (Rota and Wallstrom, 1997)

For every n > 2, the random measure My is the unique symmetric
random measure with values in L>(IP) such that

(@M M3 (C) =0, for every C C ZJ; for some 7t # 0.
(IT) For every set C of the type

C= UwEGnCw(l) Xoeee X Cw(n)/
where the C; € 2,1 =1, ..., n, are pairwise disjoint,

My (C)

n!M(Cq) X -+ x M(Cp).

50/90



MULTIPLE WIENER-ITO INTEGRALS

One can indeed define multiple (Wiener-Ito) integrals with
respect to Mg, n > 2, for every symmetric f € L2(v"):

(1) First consider simple func’Eions of the type f(z1,...,z4) =
Y.itq aile (z), where every C; € Z] is a symmetrized rectan-
gle with no diagonals as before, and set

M(f) = an z) M (dz) EalxM”

(2) Observe that, for every f, ¢ simple and symmetric, E[IM(f) x
I (8)] = ”!<frg>L2(v")1n:m-

(3) Extend the definition to every f € L2(v") (symmetric and
square-integrable) by a density argument. The L?(IP) closed

orthogonal vector spaces obtained in this way are the Wiener

chaoses associated with M.
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PART 4:
PRODUCT AND DIAGRAM FORMULAE
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Take integers ny, ..., ny > 1, write n = ny 4 - - - + 1, and consider
the partition

Tt = {[Tl]], {Tl] + 11 e nZ}/ Y {nl + e npq+ ]., ey 1’1}},

write f1 ® - - - ® fi for the tensor product of kernels fi, ..., fi.
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PRODUCT FORMULAE

Take integers ny, ..., iy > 1, write n = ny + - - - 4+ nx, and consider
the partition

7 =A{m],{m+1,..,nm+n}, ... {nm+-m_1+1,.,n}t}

write f; ® - - - ® fi for the tensor product of kernels fi, ..., fi.

Theorem (Product formulae; Rota & Wallstrom, 1997)

For adequate symmetric kernels f1, ..., fi (for instance, simple and
symmetric):

HIMf] Z/fl - ® fi)dM}

OATT* =
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* One has that

H (F) = [ (1o fOM (A1, dz,)

where A* := {(z1,...,2n) 1 2; # 2j, Vi # jst. i~z j}.

* To conclude:

A* = U Zn.

oA =0
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* One has that
H (F) = [ (1o fOM (A1, dz,)

where A* := {(z1,...,2n) 1 2; # 2j, Vi # jst. i~z j}.
* To conclude:

A= |J zZ}

oA*=0
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* One has that

H

o (f7)

k
H{ )3 u(ﬁ,a»M;a,.(m}

j=1 | g5€P([n)])

Y. u0,p) ML(A® @ f)
0€(0,7*]

Y, u0p0) ) Mi(fi® @ fi).
0€ 7(),7( *] TF0

*x Conclude by using the relation

Y. u(0,p) =60, Ay).

Y]
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* One has that

k
H MR = 11{ )3 u(ﬁm;)M;a,.(m}
1

o €P([ny])
- E y((A),p)M;Q(ﬁ@---@fk)
0€[0,7*]
= Z ‘11((),,0) ZM':(fl ® - fr).
0€[0,71*] ey

*x Conclude by using the relation
Z ;z(ﬁ,p) =5(0, T A ).
0€[0,m*AY]
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* One has that

H

o (f7)

k
H{ X ﬂ(ﬁr%)M’;a,-(fj)}

=1 oi€P((m])

Y, w00 ML(A®-- @ f)

0€[0,7*]

Y. nwp) Y MYfio- - fi).

0€[0,7*] 70
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PROOF #2 — ALGEBRAIC

* One has that

k
[T
j=1

=1\ o;€P([n])
Y. u0,p) ML(A® @ fi)

0€[0,7*]

k
H{ )y V(O/Uj)M’;a](fj)}

Y. u0p) Y My(fie-® f).

0€[0,7*] T=Q

* Conclude by using the relation

Y., u(0,p) =60, A7)
0€[0,m* Ay

55/90



In addition to graphical representations, multiplication formulae
can be neatly represented in terms of contraction operators:
every symmetric f € L2(vPF), g€ % ) and every

r=20,..min(p,q)

/‘ XDy (L\T(,\”|,..., .\//771772/‘) =

/7‘ '/:(la)‘/x]/"‘/-\']? /“)(‘{(arr-\’q r ],,,,,,\‘/H»L],:/.)["‘(da,.:),
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CONTRACTIONS

In addition to graphical representations, multiplication formulae
can be neatly represented in terms of contraction operators: for
every symmetric f € L2(v?), ¢ € L?>(v7) and every
r=0,..,min(p,q)

f ®1’ g(x1, veey xp+q72r) =

/%r f(aT/ X1y eer xP—r)g<ar, xq_r_;,_l, ceey xPJrqur)Ur(dar),
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PRODUCT FORMULAE: GAUSSIAN

Let p,q > 1and let f € L?(vF), ¢ € L?(v7) be symmetric.

Theorem (Product of Gaussian Integrals)

min(p,q) —

Ir(’;(f) X ch(g) = ) <l:> (Z) Iptg—2r(f ®r g)-

r=0
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PRODUCT FORMULAE: GAUSSIAN

Let p,q > 1and let f € L?(vF), ¢ € L?(v7) be symmetric.

Theorem (Product of Gaussian Integrals)

I7(f) < 17 (8) = mhf’q) r! <l:> (Z) Ip+q72r(f/§r/8)-

r=0

Forn =p+gqgand 7" = {{1,..,p}, {p +1,....q}}, the coefficient
r!(?)(7) counts those ¢ € P, such that ¢ A 7* = 0 and ¢ has r
blocks with two edges and p + g — 2r singletons.
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* In the Poisson case, multiplication formulae have a more
complex form, due to the fact that A} = 7 +v,n > 2

*x Example: For symmetric f, g in two variables

I//(f) % Ii](o) o [1/<f_. < U + [I](](*U 0) + [é/(]( -

13)
210 (F %9 g) + 411 (f %5 §) + 2(f, §) 12002,

where (Y. Kabanov’s notation, 1976)

FRe(x,y,2) = fx,y)g(x,2), fHog

(2 y) = f(xy)g(xy),
and f x5 g(z)
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PRODUCT FORMULAE: POISSON

* In the Poisson case, multiplication formulae have a more
complex form, due to the fact that A} = 7 +v,n > 2.
* Example: For symmetric f, g in two variables:

D) x K@) =1(fo8) + B(fls) + B(feig)
211 (f %3 8) + 4L (f 3 8) +2(f, 8)1202).
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PRODUCT FORMULAE: POISSON

* In the Poisson case, multiplication formulae have a more
complex form, due to the fact that A} = 7 +v,n > 2.
* Example: For symmetric f, g in two variables:

D) x K@) =1(fo8) + B(fls) + B(feig)
21 (f 3 8) + 4L (f %3 8) +2(f, &) 12(42).

where (Y. Kabanov’s notation, 1976)

fg(xy2) = fx,y)g(xz), fraglxy) =f(xy)g(xy)

and fx g(z) = [, f( (x,z)v(dx).
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

* Recall that the Hermite polynomials {H,(x) : n > 0} on
the real line are given by the recursive relation Hy = 1 and

Hy(x) = 6Hy—1(x), 6f(x) = xf(x) - f'(x).
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

* Recall that the Hermite polynomials {H,(x) : n > 0} on
the real line are given by the recursive relation Hy = 1 and

Hy(x) = 6Hy—1(x), 6f(x) = xf(x) - f'(x).

» For instance, H; (x) = x, Ha(x) = x* — 1, ... We easily verify
that
I‘I;I1 = Tlanl.

* Hermite polynomials are a complete set of orthogonal poly-
nomials for the standard Gaussian density on the real line.
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

* Now select h € L?(u) such that ||k]|;2, = 1. Forn > 1
we apply the multiplication formula to the two integrals
I (h®") and I¢ (h):

L? (h®") x Ilc(h) = Ifﬂ(h@(wl)) + nIE_l(h@)(n—l))‘
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

* Now select h € L?(u) such that ||k]|;2, = 1. Forn > 1
we apply the multiplication formula to the two integrals
I (h®") and I¢ (h):

L? (h®") x Ilc(h) = Ifﬂ(h@(wl)) + nIE_l(h@)(n—l))‘

* Since I¢(h) = Hy[I¢ (h)], we obtain the important formula

IS (h®") = Hy[IF (h)], Vn > 1.

* Remark: In the Poisson case, similar connections (but less
elegant and less exhaustive) can be established with the class
of Charlier polynomials.
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CHAOTIC DECOMPOSITION

~

The following statement applies to M = G, 7.

Theorem (Chaotic decomposition)
For every F € L?>(c(M),P),

F=E[F]+ }, L'(fa),

n>1

where f, € L2(v"), the decomposition is unique, and the series is
converging in L?(IP). In compact Fock space notation,

LX(c(M),P) = R® P Cr ~ R P VnlL2(v"),

n>1 n>1

where C,, stands for the nth Wiener chaos of M.
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DIAGRAM FORMULAE: MOMENTS

We consider, integers ny, ..., n, > 1, write n = ny + - - - + ny, and
consider the partition 77" € P, given by

={{1,..m},{m+1,.,n+n}, ... {m+-nm_1+1,.,n}}

Theorem (Diagram Formulae for Moments)

For adequate symmetric kernels f1, ..., f (for instance, simple and
symmetric):

E

7

k
Hlﬁf(ff)] = ¥ [ (he-9f)

j=1 onm*=0

®d (k)

beo

where: <A‘]\ZI|> = IE[A%]
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DIAGRAM FORMULAE: CUMULANTS

We consider, integers ny, ..., n, > 1, write n = ny + - - - + ny, and
consider the partition 77* € P, given by

o ={{1,..m}, {m+1,..,n+n}, ... {m+--nm1+1,..,n}}

Theorem (Diagram Formulae for Cumulants)

For adequate symmetric kernels f1, ..., f (for instance, simple and
symmetric):

XLt (f1), s T (fi))
= ) A/Z.”(f1®"'®fk)

onmr=0;0vrr=1

%d<Aﬁjﬁ>].

The difference with the expression for moments resides in the

additional constraint o vV 7* = 1.
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* The formula for moments is a direct consequence of multi-
plicativity.

* The formula for cumulants follows from the relation below
(which is a — not so immediate! — consequence of Leonov
and Shyraev formulae):

X(I;I\\I <f>/ r n <f/\)>
= L wked) ¥ Q (Al (io---@fo),
T rs’p*(rl,..‘,r'/)?/—’” SP bey

”,u"\r(‘ =0

after exchanging the order of summation.
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PROOFS (SKETCH).

* The formula for moments is a direct consequence of multi-
plicativity.

* The formula for cumulants follows from the relation below
(which is a — not so immediate! — consequence of Leonov

and Shyraev formulae):

x (IR 1 ()
= )3 npd) X ®<A\]\f\>(f1®“'®fk),

m*<p=(r1,...71)EPu <P bey
yAT*=0

after exchanging the order of summation.
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USING THE FORMULA: GAUSSIAN CASE
* Recall that AS = v and AS = 0, for n > 2, meaning that

the only contribution to the formulae comes from non-flat
perfect matchings.
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* Recall that AS = v and AS = 0, for n > 2, meaning that
the only contribution to the formulae comes from non-flat
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* Consider kernels fi, ..., fy and build the tensor product f; ®
-+ - ® f. This a function of n = ny + - - - + ny = n variables;
we assume n even (otherwise the formula gives zero).
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* For every perfect matching v € M,, build the function F,,
of n/2 variables by identifying two variables x;, x; in the
argument of f; ® - - - ® f wheneveri ~, j.
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USING THE FORMULA: GAUSSIAN CASE

* Recall that AS = v and AS = 0, for n > 2, meaning that
the only contribution to the formulae comes from non-flat
perfect matchings.

* Consider kernels fi, ..., fy and build the tensor product f; ®
-+ - ® f. This a function of n = ny + - - - + ny = n variables;
we assume n even (otherwise the formula gives zero).

* For every perfect matching v € M,, build the function F,,
of n/2 variables by identifying two variables x;, x; in the
argument of f; ® - - - ® f wheneveri ~, j.

* Then,

E(I5 () x ()= X [

YEMyAT*=0

X <InG1 (fl)/' <. Ig{ (fk)) = Z s F7 dyn/z
yeM,
YAt =0; vt =1

F’Y dvn/z

65/90



1 Consider the case n = 6, and

™ = {{1},{2,3},{4,5,6}}.

Then, the perfect matching

v={116},{24},{3,5}}

verifies y A m* = 0, and y vV r* = 1.

2 3

Q Q
Also,

i ® fo® f3(x1,..., x6) = f1(x1) f2(x2, x3) f3(x4, X5, X6),

and
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1 Consider the case n = 6, and

™ = {{1},{2,3},{4,5,6}}.
2 3
e

Then, the perfect matching
Also,

v={116},{24},{3,5}}

verifies y A m* = 0, and y vV r* = 1.

fi® fo2® fa(x1, ., %6) = fi(x1) f2(x2, x3) f3(X4, X5, X6),

and
E,(x1,x2,x3) = f1(x1) fa (22, x3) f3(x2, x3, x7).
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* For every m > 2, we want to compute

XI5 () = x(5 (f), - 15 (f)),

"/'F-stu
YA =0; V=1
where 7* = {{1,2},{3,4},...{2m—1,2m}} = {{2j —1,2j} :
i=1,..,m}, and F, is obtained from

S —
m times

m times
for a generic symmetric kernel f.
* By the theorem,
Xm ( [’_)G (f) ) o Z //W FA/, dl'm,
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DOUBLE GAUSSIAN INTEGRALS, I

* For every m > 2, we want to compute

xm(I7 (F)) = X(5 (f), - 15 (f),

N
m times
for a generic symmetric kernel f.
* By the theorem,

XM(IS(]()) = Z . E, dv™,
’)’GAMZWI R z
YAT*=0;yVrr*=1
where = {{1,2},{3,4},....{2m —1,2m}} = {{2j — 1,2j} :
j=1,..,m}, and F, is obtained from
f@--af.

—_—
m times
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DOUBLE GAUSSIAN INTEGRALS, 11

1 2
For every m > 2, My, contains exactly

3 4 2"=1(m — 1)! solutions 1 to the system

Ay =0
5 6 P

mVy=1
. : where

™ ={{2j—1,2j}:j=1,.. n}

9 10

<1 12
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DOUBLE GAUSSIAN INTEGRALS, 11

1 2
For every m > 2, My, contains exactly

3 4 2"=1(m — 1)! solutions 1 to the system

Ay =0
5 6 P

mVy=1
. : where

™ ={{2j—1,2j}:j=1,.. n}

9 10

Up to a permutation of variables, each so-

< lution generates the same function F,.
1 12
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DOUBLE GAUSSIAN INTEGRALS, III

Proposition
For f symmetric and square-integrable,

XIS (F)) = 271 (m — 1)1 x
/Zm f(x1,x2) f(x2,x3) -« f(xtm, x1)v™ (dxq,
= 2" (m — 1)!Trace(HY),

where HY' is the Hilbert-Schmidt operator

s EH (h) = /Zh(x)f(o,x)v(dx).

. /dxm)
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USING THE FORMULA: POI1SSON CASE

* Recall that (AZ> = v for n > 2, meaning that non-flat parti-
tions with no singletons contribute to the formulae. Such
a class is denoted by PU.
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USING THE FORMULA: POI1SSON CASE

* Recall that (A}}) = v for n > 2, meaning that non-flat parti-
tions with no singletons contribute to the formulae. Such
a class is denoted by PU.

* Consider kernels fi, ..., fy and build the tensor product f; ®
-+ ® fr. This a function of n = ny + - - - + ny = n variables.

x For every v € PY, build the function F, by identifying
those variables in the argument of f1 ® - - - ® f; that are in

the same block of 7.
* Then,
E(L, (f) < x 1L (f)) = ¥ Rl
YePY YA =0 z
X (1,’171 (f1), - 11 (fk)) — y [ E dvl.

yePl:
A =0;yvre=1
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Fix m > 2. If 7 = 0, then ¥ = 1 is the only
solution to the system

T Ay
TV y

4

0
1

meaning that

xn(l](1) = [ n(2)" v(d)

This also follows from:

E {UM{W”} = exp { / (ethz) — 1 — if/l(:))l'(tf:)}
Jz
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Fix m > 2. If 7 = 0, then ¥ = 1 is the only
solution to the system

T Ay
TV y

meaning that

0
1

4

xn(l](1) = [ n(2)" v(d)

This also follows from:

E [ef”? <h>] = exp { /Z (™M) — 1 — ith(z))v(dz)}
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PART 5:
LIMIT THEOREMS
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A CLASSICAL RESULT

Theorem (Method of moments and cumulants)

Let X be a random variable whose distribution is determined by the
moments, and let { X, : n > 1} be a sequence of random variables with
finite moments of all orders such that, for all integers m > 1, either

E[X"] — E[X"], 1 — oo,
or

Then,

X, =W x.
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A CLASSICAL RESULT

Theorem (Method of moments and cumulants)

Let X be a random variable whose distribution is determined by the
moments, and let { X, : n > 1} be a sequence of random variables with
finite moments of all orders such that, for all integers m > 1, either

E[X"] — E[X"], 1 — oo,

or
Xm(Xn) — xm(X), n — oo
Then,
X, W x.

Remark. If X ~ .47(0,1), then x»(X) = Var(X) = 1 and
xm(X) = 0 for every m # 2.
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FOURTH MOMENT THEOREM — GAUSSIAN CASE

Theorem (Nualart and Peccati, 2005)
Let q > 2 and {I¢ (fu) : n > 1} be such that B[IF (f»)?] = 1. Then,
the following are equivalent, as n — oo:
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FOURTH MOMENT THEOREM — GAUSSIAN CASE

Theorem (Nualart and Peccati, 2005)
Let q > 2 and {I¢ (fu) : n > 1} be such that B[IF (f»)?] = 1. Then,
the following are equivalent, as n — oo:

@ IS(fa) 2 X ~ 4 (0,1)

@ xa(IS(fa) =0
@) E(I(fu)*) =3

Remarks. The implication (1) = (2) < (3) are trivial.
Free version by Kemp, Nourdin, Peccati and Speicher (2012).
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FOURTH MOMENT THEOREM — POISSON CASE

Theorem (Dobler and Peccati, 2017; Dobler, Vidotto and
Zheng, 2017)

Letq > 1and {Ij(fn) :n > 1} be such that]E[I,'j(fn)Z} =1.1If
X4(Il]77(fn)) — 0, then

() 2 x ~ 7 (0,1).

Remark. Free version by Bourguin and Peccati (2014).
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% Call A the algebra composed of finite linear combinations of
multiple integrals I,? (g), where p > 0 and g is symmetric.

*x Write C,, for the mth Wiener chaos of G (C,, C A).

* The product formula yields that

lf (fu) Z Pf0] g\ fu ‘CM/

m=0

with proj(I;(fu)* | Co) = IE[I[(/"(.]“,,)z} = 1 by definition.
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PROOF — SQUARES

* Call A the algebra composed of finite linear combinations of
multiple integrals I7(g), where p > 0 and g is symmetric.

* Write C,, for the mth Wiener chaos of G (C,,, C A).

* The product formula yields that

9

1S(fa)? = Y proj(Iy(fu)? | Cam),

m=0

with proj(I;(f.)?| Co) = E[If (f)?] = 1 by definition.
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PROOF — FOURTH MOMENTS

* By orthogonality,
q—1

]E[ch(fn)4] = 1+ Z_:llE[Proj(lq(fn)z | CZm)Z]

+E[proj (Iq (fn)z | C2q)2]

Lemma (Nualart & Peccati, 2005)

E[proj(I,(fn)?| Cop)?] =2+ Z()Hﬂ&ﬁw

X4(Iq(fn)>>Kq ma;( an®rfn”2

.....

Xsll () = Ky | max Elproj(1y(£u)*| Can)?)

-----
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PROOF — CARRE-DU-CHAMP

* Introduce the operator L (generator of the Ornstein-Uhlenbeck
semigroup) on A by the relation

L(I?(g)) = —plg; (g), and then extend by linearity.
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* Introduce the operator L (generator of the Ornstein-Uhlenbeck
semigroup) on A by the relation

L(I?(g)) = —plg; (g), and then extend by linearity.

* Define the carré-du-champ operator

L(EJ) = 5 [L(FJ) — JLF — FL]],

for which
E[FLJ] = —E[T(E, ])].
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PROOF — CARRE-DU-CHAMP

* Introduce the operator L (generator of the Ornstein-Uhlenbeck

semigroup) on A by the relation
L(I}(f(g)) = —plg; (g), and then extend by linearity.

* Define the carré-du-champ operator
1
L(F,]) = 5 [L(F]) = JLF = FL]],

for which
E[FLJ] = —E[T(E, ])].

* Fact. I is diffusive: for every polynomial P and every F, | €
A
T(P(F),]) = P(F)T(F,])

(Check by hand, using the product formula)
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* Write F = I‘f (fn), and choose a polynomial P. Assume that
Fand X ~ .#7(0,1) are independent.
x Then, |[E[P(F)] — E[P(X)]| < ||'¥’||co, where (t € [0,1])
¥ (t) := E[P(VtF + V1 —tX)] := E[P(F)].
x One has that
111 \
) = 61E[F(F,F)P”(B)} — E[P(F)]
< KVar[I'(F,F)/q]"/~.
* Conclude by using the relations
[(F,F) 1 : g :
(q’ ) - 2 (LD + 207} = 1 1 proj(F2 | Cam).
m=0
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END OF THE PROOF — SMART PATHS
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END OF THE PROOF — SMART PATHS

* Write F = If (fn), and choose a polynomial P. Assume that
Fand X ~ .#/(0,1) are independent.

* Then, [E[P(F)] — E[P(X)]| < |¥’||co, where (t € [0,1])
¥ (t) := E[P(VtF + V1 —tX)] := E[P(F)].

* One has that

YOl = 3| EXEFP(F) - E[P(F)

< KVar[['(F,F)/q]">

* Conclude by using the relations

F(F,F) 1 2 2 -
; 2q{L(F +2gF2} ;

" proj(F?| Can).-
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ALTERNATE ENDING — COMBINATORIAL

1 2 3 For every even integer m such
that gm is even, and for every
4 5 6 v € Mgy such that

7 8 ;:) Ay =0
mVvy=1 "~
10 11 12 .
one can write

13 )| 14 ;) /g:/g@ﬂﬂ

16 17 18 for somer = 1,...,q — 1, where
[H[ < 1.
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ALTERNATE ENDING — COMBINATORIAL

1 2 3 For every even integer m such
that gm is even, and for every
4 5 6 v € Mgy such that

7 8 ;:) Ay =0
mVvy=1 "~
10 11 12 .
one can write

13 14 £> /B:/U®ﬂﬂ

16 17 18 for somer = 1,...,q — 1, where
[H[ < 1.

The conclusion follows by applying Cauchy-Schwarz to every +.
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JOINT GAUSSIANITY — PECCATI & TUDOR, 2005

Theorem (Joint Gaussian Convergence)
Ford > 2, let

Fy = (Fy1on Fug) = (I (f), - I (F)), m>1,

be such that Cov(F,) — X > 0, as n — oo. Then, the following are
equivalent, as n — oo,

@ F, "2 X ~ 4(0,%);

(2) Foreveryi=1,..d, F,; LAW X; ~ A (0,%(i,1)).
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JOINT GAUSSIANITY — PECCATI & TUDOR, 2005

Theorem (Joint Gaussian Convergence)
Ford > 2, let

Fy = (Fy1on Fug) = (I (f), - I (F)), m>1,

be such that Cov(F,) — X > 0, as n — oo. Then, the following are
equivalent, as n — oo,

@ F, "2 X ~ 4(0,%);

(2) Foreveryi=1,..d, F,; LAW X; ~ A (0,%(i,1)).

Remark. Similar results on the Poisson space: Peccati and
Zheng (2010), Dobler, Vidotto and Zheng (2017).
Free versions: Nourdin, Peccati and Speicher (2013).
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INDEPENDENCE — NOURDIN AND ROSINSKI, 2010 ;
NOURDIN, NUALART AND PECCATI, 2013

Theorem (Asymptotic independence)
Let

F, = ch(fﬂ)/ Jn = I;g;(gn)/ n=>1

be such that F,, and |, converge in distribution. Then, the following
are equivalent as n — oo :

(1) F, and ], are asymptotically independent ;
(2) Cov(F2,J2) — 0.
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INDEPENDENCE — NOURDIN AND ROSINSKI, 2010 ;
NOURDIN, NUALART AND PECCATI, 2013

Theorem (Asymptotic independence)
Let
Fo=17(fa), Jn=15(8n), n>1
be such that F,, and |, converge in distribution. Then, the following
are equivalent as n — oo :
(1) F, and ], are asymptotically independent ;
(2) Cov(F2,J2) — 0.

Remark.
Results of this type are still unkown on the Poisson space.
Free version: Bourguin and Nourdin (2017)
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PART 6:
A GEOMETRIC EXAMPLE
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A MODEL (BERRY, 1977)

x Fix E > 0. The Berry random wave model on R? with
parameter E, written

Br = {Bg(x) : x € R%},

is defined as the unique (in law) centred, isotropic Gaussian
field on R? such that
2 82

ABg +47%E - B =0, where A = — + —.
E E ax% + 0x3
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A MODEL (BERRY, 1977)

x Fix E > 0. The Berry random wave model on R? with
parameter E, written

Br = {Bg(x) : x € R%},
is defined as the unique (in law) centred, isotropic Gaussian
field on R? such that
2 82

ABg +47%E - B =0, where A = — + —.
E E ax% 0x3

x Equivalently, E[Bg(x)Bg(y)] = Jo(2rvVE||x —y||) (Jo = Bessel
function of the 1st kind ) or

BE x Zznfzx G(dz),

“ i e

where G := Hermitian Gaussian measure on the unit circle.
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NODAL SETS

We are interested in the high-energy (as E — co) geometry of the
nodal sets (components are the nodal lines):

({0 ND:={x € D: Bg(x) =0},

where D is a compact set with piecewise smooth boundary. In

particular, in
Lg :=length B;'({0}) N D

"3"" i"l"*’ ‘%"qu > THDE VBN ﬁ:
2 i ‘Z\“«n&‘?&v SHep

:"’ ‘?;»Z%.ge;».l st °“~"f
lb o u‘l
ua 2?9 % é}{ @,o,,‘\
’ .v ::V \vm,,..
e
&noo vn 0‘\
%§§555“h§ = nwo

"’é’“&u a,{ »-ﬁ:”
oo 3 =

o °‘=v=""“"%:::~:’:~%‘§:‘é

5 s:?fl’? ?‘az‘é,ﬁﬂ\‘{'\\ﬁﬁ:%ﬂn \,,,WS

(Ef‘z \.-}xm xf_‘v’“ =
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* Geometric study of excursion sets of isotropic random fields.

*x An amplification of Berry’s universality conjecture (1977)
states that the high-energy behaviour of Laplace eigenfunc-
tions on a Riemaniann surface coincides with the average
behaviour of the Random Wave Model on a comparable pla-
nar domain (see Zelditch, 2009). Used to heuristically test
open problems on the geometry of deterministic nodal sets,
like e.g. Yau’s conjecture.
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states that the high-energy behaviour of Laplace eigenfunc-
tions on a Riemaniann surface coincides with the average
behaviour of the Random Wave Model on a comparable pla-
nar domain (see Zelditch, 2009). Used to heuristically test
open problems on the geometry of deterministic nodal sets,
like e.g. Yau’s conjecture.

86/90



MEAN AND VARIANCE

* Berry (J. Stat. Physics A, 2002) : semi-rigorous computations
lead to:
_ 27T\/E, Var(Lg) ~ area D
2v2

although the natural guess for the order of the variance is ~

VE.

E[Lg]
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MEAN AND VARIANCE

* Berry (J. Stat. Physics A, 2002) : semi-rigorous computations
lead to:

_ 27T\/E, Var(Lg) ~ area D
2v/2

although the natural guess for the order of the variance is ~
VE. Such a variance reduction “... results from a cancellation
whose meaning is still obscure... ” (Berry (2002), p. 3032).

E[Lg]

* Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (Comm. Math. Ph., 2007)).
Similar cancellations proved on the flat torus by Krishnapur,
Kurlberg and Wigman (Ann. Math., 2013).
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MEAN AND VARIANCE

* Berry (J. Stat. Physics A, 2002) : semi-rigorous computations
lead to:

_ 27T\/E, Var(Lg) ~ area D
2v2

although the natural guess for the order of the variance is ~
VE. Such a variance reduction “... results from a cancellation
whose meaning is still obscure... ” (Berry (2002), p. 3032).

E[Lg]

* Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (Comm. Math. Ph., 2007)).
Similar cancellations proved on the flat torus by Krishnapur,
Kurlberg and Wigman (Ann. Math., 2013).

* Write
~  Lg— E(Lg)

B Var(Lp)/2
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A RESULT

Theorem (Nourdin, Peccati & Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Lg | Chaosyg41) =0, g2>0,

and proj(Lg | Chaos,) reduces to a “negligible boundary term”,
as E — oo,
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A RESULT

Theorem (Nourdin, Peccati & Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Lg | Chaosyg41) =0, g2>0,

and proj(Lg | Chaos,) reduces to a “negligible boundary term”,
as E — oo,

2. (4" chaos dominates) Let E — oo. Then,
L = proj(Lg | Chaosy) + op(1).

3. (CLT) As E — oo,
Lr = Z ~ N(0,1).
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*

The fourth chaos dominance continues to hold on more

general manifolds (spheres, tori, ...), and generates variance
cancellations.

The nodal length on the sphere verifies a CLT (Marinucci,
Rossi and Wigman, 2017)

The nodal length on the flat torus verifies a non-universal
& non-central limit theorem (Marinucci, Peccati, Rossi and
Wigman, GAFA 2017)

Locally, everything behaves like Berry’s model (and there-
fore has Gaussian fluctuations), see Canzani & Hanin, 2016.

How these phenomena are connected to the geometry of the
manifold?
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Thank you for your attention !

(Sorry I have to leave... )
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