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OVERVIEW, I

? Survey of the combinatorial structure of recently developed
probabilistic limit theorems, based on several improve-
ments of the combinatorial method of moments and cu-
mulants.

? Applications of a geometric flavour: random geometric
graphs, random tessellations, excursions of random fields,
...

? Other techniques/tools involved: Gaussian analysis, Malli-
avin calculus of variations, Markov semigroups, Stein’s
method, Chen-Stein method, ...
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OVERVIEW, II

These asymptotic results
are perfectly encoded by
the Rota-Wallstrom theory
(1997) of combinatorial
stochastic integration —
based on Möbius calculus.

The R-W paper is actually
a “Rosetta Stone” for an
enormous number of com-
binatorial formulae in the
literature.

(See Roland’s course for non-commutative versions.)
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A NOTE ON COAUTHORS
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THE PLAN

1. Lattice of partitions and elements of Möbius calculus.
2. Cumulants
3. Random measures and the Rota-Wallstrom Theory
4. Product and diagram formulae
5. Limit theorems
6. Geometric application (blackboard/handout)

From now on: everything random lives on an adequate triple

′′(Ω,F , P)′′ (E = expectation)
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PART 1:
LATTICE OF PARTITIONS AND MÖBIUS CALCULUS
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PARTITIONS

? Given n ≥ 1, we write [n] = {1, ..., n}. Pn is the poset of
partitions of [n], with partial order relation (by inclusion of
blocks) denoted by 4. A partition

π = {b1, ..., br} ∈ Pn

has |π| := r blocks. If b ⊆ [n], write P(b) := poset of
partitions of b.

? Write i ∼π j if i, j are in the same block of π.

? The minimal and maximal partitions of Pn are, respectively,

0̂ = {{1}, ..., {n}}, 1̂ = {[n]}.
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EXAMPLE OF P3

? There are only five partitions: 1̂, 0̂,

π1 = {{1}, {1, 2}}, π2 = {{1, 3}, {2}}, π3 = {{1, 2}, {3}}.

? One has
0̂ 4 πi 4 1̂, i = 1, 2, 3.

? However,
πi ��4 πj, i 6= j.
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LATTICE STRUCTURE

? The poset Pn is actually a lattice, since one can define two
operations of meet and join, from Pn ×Pn onto Pn, written
respectively

(σ, π) 7→ σ ∧ π

(σ, π) 7→ σ ∨ π.

? The meet σ ∧ π is uniquely characterized by the properties:
(i) σ ∧ π 4 σ, π , and (ii) if γ 4 σ, π, then γ 4 σ ∧ π.

? The join σ ∨ π is uniquely characterized by the properties:
(i) σ, π 4 σ ∨ π, and (ii) if σ, π 4 γ, then σ ∨ π 4 γ.
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MEET AND JOIN

σ = {{1, 2}, {3}, {4}}

π = {{1}, {2, 3}, {4}}

σ ∧ π = 0̂

σ ∨ π = {{1, 2, 3}, {4}}
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SEGMENTS

? The segment associated with two partitions σ 4 π is

[σ, π] := {ρ ∈ Pn : σ 4 ρ 4 π},

in such a way that [0̂, 1̂] = Pn.

? The class λ(σ, π) of the segment [σ, π] is the formal string

λ(σ, π) := (1r12r2 · · · |σ|r|σ|),

indicating that π has exactly ri blocks containing exactly i
blocks of σ.

? λ(σ, π) can be regarded as a partition of the integer |σ|:

1r1 + 2r2 + · · ·+ r|σ||σ| = |σ|, r1 + · · ·+ r|σ| = |π|.
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EXAMPLES

? λ(σ, 1̂) = (1020 · · · |σ|1).

? λ(0̂, σ) = (1r12r2 · · · nrn), where ri := # blocks of σ of size i.
? Case n = 5,

σ = {{1}, {2}, {3}, {4, 5}}, π = {{1}, {2, 3, 4, 5}}.

Then,

[σ, π] = {σ ; {{1}, {2}, {3, 4, 5}} ;
{{1}, {2, 4, 5}, {3}} ; {{1}, {2, 3}, {4, 5}} ; π}

and λ(σ, π) = (11203140).
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MÖBIUS FUNCTIONS, I

? The incidence algebra of Pn is the class of all functions
f : Pn ×Pn → C such that

f (σ, π) = f (σ, π)1{σ4π}.

? Two distinguished elements of In (zeta function and iden-
tity for ?):

ζ(σ, π) = 1{σ4π}, and δ(σ, π) = 1{σ=π}.

? Convolution on the incidence algebra In of Pn is

f ? g(σ, π) = ∑
$∈[σ,π]

f (σ, $)g($, π),

with Σ∅ ≡ 0.
22 / 90
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MÖBIUS FUNCTION, II

? The associated Möbius function [i.e., the two-sided inverse
of ζ on (In, ?)] is denoted by µ(·, ·): it is characerized by the
relations: (a) µ(π, π) = 1, (b)

µ(σ, π) = − ∑
σ4$≺π

µ(σ, $) = − ∑
σ≺$4π

µ($, π), σ ≺ π,

and (c) µ(σ, π) = 0 otherwise.
? For partitions σ 4 π such that m = |σ| ≥ |π| = r, the

function µ is explicitly given by

µ(σ, π) = (−1)m−r(2!)r3(3!)r4 · · · ((m− 1)!)rm

where λ(σ, π) = (1r12r2 · · ·mrm) is the class of [σ, π]. In

particular, µ(π, π) = 1, and µ(σ, 1̂) = (−1)|σ|−1(|σ| − 1)!
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MÖBIUS FUNCTION, III

A small number of (elementary) properties of µ are used below:
(i) Inversion:

F(π) = ∑
σ4π

G(σ) if and only if G(π) = ∑
σ4π

µ(σ, π)F(σ)

F(π) = ∑
σ<π

G(σ) if and only if G(π) = ∑
σ<π

µ(π, σ)F(σ)

(ii) On segments :

∑
$∈[σ,π]

µ($, π) = ∑
$∈[σ,π]

µ(σ, $) = δ(σ, π).

(iii) Möbius functions are preserved by isomorphisms.
(iv) Möbius functions factorize on lattice products.
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FLAT AND CONNECTED DIAGRAMS

? Consider a partition with the form

π? =
{
{1, ..., n1}, {n1 + 1, ..., n1 + n2},

...., {n1 + · · ·+ nk−1 + 1, ..., n1 + · · ·+ nk}
}

(n1 + · · ·+ nk = n)
? Solutions to the equation σ ∧ π? = 0̂ have a representation

in terms of non-flat diagrams.
? Solutions to the equation σ ∨ π? = 1̂ have a representation

in terms of connected diagrams.
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NON-FLAT VS. FLAT

π? = {{1}, {2, 3}, {4, 5, 6}}
σ = {{1, 2, 4}, {3, 5}, {6}}, $ = {{1, 2, 4}, {3, 5, 6}}
π? ∧ σ = 0̂

π? ∧ $ = {{1}, {2}, {3}, {4}, {5, 6}} 6= 0̂
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CONNECTED VS. NON-CONNECTED

π? = {{1}, {2, 3}, {4, 5, 6}}
σ = {{1, 2, 4}, {3, 5}, {6}}, γ = {{1}, {2, 4}, {3, 5, 6}}
π? ∨ σ = 1̂

π? ∨ γ = {{1}, {2, 3, 4, 5, 6}} 6= 1̂
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PART 2:
CUMULANTS
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NOTATION AND SETTING

? For a fixed n ≥ 1, we consider a vector of r.v.’s X[n] =
(X1, ..., Xn) s.t. E|Xj|n < ∞, j = 1, ..., n.

? For every b = {j1, ..., jk} ⊆ [n],

Xb := (Xj1 , ..., Xjk), Xb := Xj1 × · · · × Xjk ,

and

gXb(t1, ..., tk) := E

[
exp

{
i

k

∑
`=1

t`Xj`

}]
.
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CUMULANTS

? Define the cumulant χ (Xb) of Xb as

χ (Xb) := (−i)k ∂k

∂t1 · · · ∂tk
log gXb (t1, ..., tk) |t1=···=tk=0 .

? For a single random variable X s.t. E|X|n < ∞, the nth
cumulant is

χn(X) := χ(X, ..., X) := (−i)n ∂n

∂zn log gX(z) |z=0,

and consequently χ1(X) = E(X).
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FIRST PROPERTIES

? The mapping Xb 7→ χ (Xb) is homogeneous:

χ
(
v1Xj1 , ..., vkXjk

)
= v1 · · · vk χ (Xb) ;

? the application Xb 7→ χ (Xb) is invariant with respect to
permutations of b;

? if the vector Xb has the form Xb = Xb′ ∪ Xb′′ , with b′, b′′ 6= ∅,
b′ ∩ b′′ = ∅ and Xb′ and Xb′′ independent, then χ (Xb) = 0;

? if Y = {Yi : i ∈ I} is a Gaussian family and if X is a vector
obtained by juxtaposing n ≥ 3 elements of Y (with possible
repetitions), then χ (X) = 0.
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LEONOV-SHIRYAEV RELATIONS

Theorem (Leonov & Shiryaev, 1959)
For every b ⊆ [n],

1.
E(Xb) = ∑

π={b1,...,bk}∈P(b)
χ(Xbk) · · · χ(Xb1);

2.

χ(Xb) = ∑
σ={a1,...,ar}∈P(b)

(−1)r−1(r− 1)!E(Xa1) · · ·E(Xak).

Remark. In the case Xb = (X, ..., X) (n times):

E(Xn) = ∑σ={b1,...,bj}∈Pn
χ|b1| (X)× · · · × χ|bj| (X) .
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SKETCH OF PROOF

By Leibniz formula,

E(Xn)

= (−i)n DngX (0)

= (−i)n Dn−1 (D log gX · gX) (0)

=
n−1

∑
s=0

(
n− 1

s

)
(−1)s+1 Ds+1 log gX (0)

× (−i)n−s−1 Dn−s−1 log gX (0)

=
n−1

∑
s=0

(
n− 1

s

)
χs+1 (X)E

(
Xn−s−1

)
, and then use recursion.

Point 2 is Möbius inversion !
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EXAMPLES

?
χ(X, Y) = E(XY)−E(X)E(Y) = Cov(X, Y)

?
χ3(X) = 2E(X)3 − 3E(X)E(X2) + E(X3)

?

χ4(X) = −6E(X)4 + 12E(X)2E(X2)− 3E(X2)2

−4E(X)E(X3) + E(X4)

(If E(X) = 0, then χ4(X) = E(X4)− 3E(X2)2)
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POISSON, BELL AND TOUCHARD

? Let Π be a Poisson random variable with parameter 1 (that
is, P [Π = k] = e−1/k!). Then, gΠ (t) = exp

[
eit − 1

]
, so that

χn (Π) = 1, n ≥ 1.
? It follows that

E (Πn) = |Pn| = Bn (the nth Bell number),

? This is equivalent to the “Dobinsky formula” (1887)

Bn =
1
e

∞

∑
k=0

kn

k!
, n ≥ 1.

? Taking an arbitrary parameter λ > 0 generates the Touchard
polynomials, whose coefficients are the Stirling numbers of
the second kind. Also,

E [(Π− 1)n] = # {partitions of [n] with no singletons} .
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FEYNMAN FORMULA

? Let (G1, ..., Gd) be a centered Gaussian vector with covari-
ance matrix {C(i, j) : i, j = 1, ..., d}.

? One has that E[G1 · · ·Gd] = 0 if d is odd, and

E[G1 · · ·Gd] = ∑
{{i1,j1},...,{id/2,jd/2}}∈Md

d/2

∏
`=1

C(i`, j`),

whereMd is the collection of all matchings of [d] (a match-
ing is a partition with blocks of size 2).

? In particular, if G ∼ N (0, σ2),

E[G2n] = σ2n |M2n| = σ2n (2n− 1)!!.
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LEONOV AND SHIRYAEV, 1959
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T. SPEED, 1983 ; G.-C. ROTA AND J. SHEN, 2000
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PART 3:
RANDOM MEASURES

AND THE
ROTA-WALLSTROM THEORY
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APPROACHING ROTA-WALLSTROM: DIAGONALS

? Let (Z,Z) be a Polish space, endowed with its Borel σ-field.
Note that {x} ∈ Z , for all x ∈ Z.

? Fix n ≥ 2. Given π ∈ Pn, we set

Zn
π := {(z1, ..., zn) ∈ Zn : zi = zj if and only if i ∼π j}

where i ∼π j = “i and j are in the same block of π” (such a
set is measurable).

? Given C ∈ Zn, we set Cπ = C ∩ Zn
π. Trivially,

C = ∪π∈Pn Cπ (disjoint union).
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GAUSSIAN RANDOM MEASURES

? Let ν be a σ-finite non-atomic positive measure on (Z,Z),
and set Zν := {A ∈ Z : ν(A) < ∞}.

? A Gaussian measure G = {G(A) : A ∈ Zν} with inten-
sity ν is a centered Gaussian family such that, for A, B ∈ Zν,

E[G(A)G(B)] = ν(A ∩ B).

Recall:

P(G(A) ∈W) =
∫

W

e−x2/2ν(A)√
2πν(A)

dx.

? Such an object exists !
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POISSON RANDOM MEASURES

? A centered Poisson measure η̂ = {η̂(A) : A ∈ Zν} is a
collection of random variables s.t.: (a) if A ∩ B = ∅, then
η̂(A), η̂(B) are independent, and (b) for every A ∈ Zν, η̂(A)
is centered Poisson with parameter ν(A). We call ν the
intensity (or “control”) of η̂.

? Such an object exists and defines a simple random point
measure on (Z,Z).

? Write M to indicate either G or η̂.
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REMARKS

? These are examples of independently scattered (or com-
pletely random) measures (see Kingman, 1967) – to which
the whole theory basically applies.

? We regard M as a non-atomic Hilbert-space valued mea-
sure, with values in a L2 space. In particular, M is σ-additive:
for Ai disjoint and A = ∪i Ai,

M(A) = ∑
i≥1

M(Ai),

with convergence in L2(P); also, M({x}) = 0, a.s.-P for
every x ∈ Z.

? When Z = R+ and ν = Lebesgue, then Wt := G([0, t]) is a
Brownian motion (up to selecting a continuous modifica-
tion).
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STOCHASTIC INTEGRALS OF ORDER ONE

? Integrating a function f : Z → R ∈ L2(ν) is an easy task,
solved by N. Wiener in the 30s.
(1) First consider simple functions of the type f (z) = ∑m

i=1 ci1Ai (z),
Ai ∈ Zν, and set

IM
1 ( f ) :=

∫
Z

f (z)M(dz) =
m

∑
i=1

ci ×M(Ai).

(2) Observe that, for every f , g simple,

E[IM
1 ( f )× IM

1 (g)] = 〈 f , g〉L2(ν).

(3) Extend the definition to every f ∈ L2(ν) by a density argu-
ment. The L2 closed vector space obtained in this way is the
first Wiener chaos associated with M.

? Things are more delicate when dealing with multiple inte-
grals. Main difficulty: M is a non-atomic vector-valued measure
charging diagonals.
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M IS GOOD!

Theorem (Engel, 1982)
The measure M is “good”: for every n ≥ 2, there exists a unique
collection of random variables

Mn = {Mn(C) : C ∈ Zn
ν } ⊂ L2(P)

such that:

1. Mn is σ-additive [in L2(P)] ;
2. for every cylinder C = A1 × · · · × An ∈ Zn

ν ,

Mn(C) = M(A1)× · · · ×M(An).
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STOCHASTIC AND DIAGONAL MEASURES

? We can now define the following stochastic measures: for
every π ∈ Pn and C ∈ Zn

ν

Mn
π(C) := Mn(Cπ), Mn

<π := ∑
σ<π

Mn
σ.

? For n ≥ 2, the nth diagonal measure associated with M is
given by: for every A ∈ Z , ∆M

1 (A) = M(A), and

∆M
n (A) = Mn

1̂ (A× · · · × A).
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FIRST PROPERTIES

? By Möbius inversion,

Mn
π := ∑

σ<π

µ(π, σ)Mn
<σ.

? This relation provides an implicit description of the mea-
sures Mn

π, via the relation:

Mn
<π(A1 × · · · × An) = ∏

b∈π

M|b|
1̂
(Xi∈b Ai)

= ∏
b∈π

∆M
|b|(∩i∈b Ai).
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GAUSS AND POISSON ARE MULTIPLICATIVE

Theorem (Rota and Wallstrom, 1997)
For every n ≥ 2 and every π ∈ Pn, the product measure Mn is
multiplicative: for every rectangle in Zn

ν ,

E[Mn
π(A1 × · · · × An)] = ∏

b∈π

E[∆M
|b|(∩j∈b Aj)].)
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COMPUTATION OF DIAGONAL MEASURES

? ∆2
G = ν and ∆n

G = 0 for every n > 2.

(Idea of the proof: take a sequence of finite partitions {A(k)
i }k≥1

of A, such that maxi ν(A(k)
i )→ 0. Then prove that

∑
i

G(A(k)
i )2 → ν(A), and ∑

i
G(A(k)

i )n → 0, ∀n > 2.)

? ∆n
η̂ = η = η̂ + ν for every n ≥ 2.

(this can be deduced using an ω-by-ω argument).
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THE PURELY NON-DIAGONAL MEASURE

Theorem (Rota and Wallstrom, 1997)
For every n ≥ 2, the random measure Mn

0̂
is the unique symmetric

random measure with values in L2(P) such that

(I) Mn
0̂
(C) = 0, for every C ⊆ Zn

π for some π 6= 0̂.

(II) For every set C̃ of the type

C̃ = ∪w∈Sn Cw(1) × · · · × Cw(n),

where the Ci ∈ Zν, i = 1, ..., n, are pairwise disjoint,

Mn
0̂ (C̃) = n!M(C1)× · · · ×M(Cn).
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MULTIPLE WIENER-ITÔ INTEGRALS

One can indeed define multiple (Wiener-Itô) integrals with
respect to Mn

0̂
, n ≥ 2, for every symmetric f ∈ L2(νn):

(1) First consider simple functions of the type f (z1, ..., zn) =

∑m
i=1 ai1C̃i

(z), where every C̃i ∈ Zn
ν is a symmetrized rectan-

gle with no diagonals as before, and set

IM
n ( f ) :=

∫
Zn

f (z)Mn
0̂ (dz) =

m

∑
i=1

ai ×Mn
0̂ (C̃i)

(2) Observe that, for every f , g simple and symmetric, E[IM
n ( f )×

IM
m (g)] = n!〈 f , g〉L2(νn)1n=m.

(3) Extend the definition to every f ∈ L2
s (ν

n) (symmetric and
square-integrable) by a density argument. The L2(P) closed
orthogonal vector spaces obtained in this way are the Wiener
chaoses associated with M.
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PART 4:
PRODUCT AND DIAGRAM FORMULAE
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PRODUCT FORMULAE

Take integers n1, ..., nk ≥ 1, write n = n1 + · · ·+ nk, and consider
the partition

π∗ = {[n1], {n1 + 1, ..., n1 + n2}, ...., {n1 + · · · nk−1 + 1, ..., n}};

write f1 ⊗ · · · ⊗ fk for the tensor product of kernels f1, ..., fk.

Theorem (Product formulae; Rota & Wallstrom, 1997)
For adequate symmetric kernels f1, ..., fk (for instance, simple and
symmetric):

k

∏
j=1

IM
nj
( f j) = ∑

σ∧π∗=0̂

∫
Zn
( f1 ⊗ · · · ⊗ fk)dMn

σ.
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PROOF #1 — GEOMETRIC

? One has that

k

∏
j=1

IM
nj
( f j) =

∫
A∗
( f1 ⊗ · · · ⊗ fk)Mn(dz1, ..., dzn)

where A∗ := {(z1, ..., zn) : zi 6= zj, ∀i 6= j s.t. i ∼π∗ j}.

? To conclude:
A∗ =

⋃
σ∧π∗=0̂

Zn
σ .

54 / 90



PROOF #1 — GEOMETRIC

? One has that

k

∏
j=1

IM
nj
( f j) =

∫
A∗
( f1 ⊗ · · · ⊗ fk)Mn(dz1, ..., dzn)

where A∗ := {(z1, ..., zn) : zi 6= zj, ∀i 6= j s.t. i ∼π∗ j}.

? To conclude:
A∗ =

⋃
σ∧π∗=0̂

Zn
σ .

54 / 90



PROOF #2 — ALGEBRAIC

? One has that

k

∏
j=1

IM
nj
( f j) =

k

∏
j=1

 ∑
σj∈P([nj])

µ(0̂, σj)Mn
<σj

( f j)


= ∑

$∈[0̂,π?]

µ(0̂, ρ) Mn
<$( f1 ⊗ · · · ⊗ fk)

= ∑
$∈[0̂,π?]

µ(0̂, ρ) ∑
γ<$

Mn
γ( f1 ⊗ · · · ⊗ fk).

? Conclude by using the relation

∑
$∈[0̂,π?∧γ]

µ(0̂, ρ) = δ(0̂, π? ∧ γ).
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CONTRACTIONS

In addition to graphical representations, multiplication formulae
can be neatly represented in terms of contraction operators: for
every symmetric f ∈ L2

s (ν
p), g ∈ L2(νq) and every

r = 0, ..., min(p, q)

f ⊗r g(x1, ..., xp+q−2r) :=∫
Zr

f (ar, x1, ..., xp−r)g(ar, xq−r+1, ..., xp+q−2r)ν
r(dar).
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PRODUCT FORMULAE: GAUSSIAN

Let p, q ≥ 1 and let f ∈ L2(νp), g ∈ L2(νq) be symmetric.

Theorem (Product of Gaussian Integrals)

IG
p ( f )× IG

q (g) =
min(p,q)

∑
r=0

r!
(

p
r

)(
q
r

)
Ip+q−2r( f̃ ⊗r g).

For n = p + q and π∗ = {{1, ..., p}, {p + 1, ..., q}}, the coefficient
r!(p

r)(
q
r) counts those σ ∈ Pn such that σ ∧ π∗ = 0̂ and σ has r

blocks with two edges and p + q− 2r singletons.
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PRODUCT FORMULAE: POISSON

? In the Poisson case, multiplication formulae have a more
complex form, due to the fact that ∆η̂

n = η̂ + ν, n ≥ 2.
? Example: For symmetric f , g in two variables:

I η̂
2 ( f )× I η̂

2 (g) = I η̂
4 ( f ⊗ g) + I η̂

3 ( f ?0
1 g) + I η̂

2 ( f ⊗1 g)

+2I η̂
2 ( f ?0

2 g) + 4I η̂
1 ( f ?1

2 g) + 2〈 f , g〉L2(ν2),

where (Y. Kabanov’s notation, 1976)

f ?0
1 g(x, y, z) = f (x, y)g(x, z), f ?0

2 g(x, y) = f (x, y)g(x, y),

and f ?1
2 g(z) =

∫
Z f (x, z)g(x, z)ν(dx).
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

? Recall that the Hermite polynomials {Hn(x) : n ≥ 0} on
the real line are given by the recursive relation H0 = 1 and

Hn(x) = δHn−1(x), δ f (x) = x f (x)− f ′(x).

? For instance, H1(x) = x, H2(x) = x2 − 1, ... We easily verify
that

H′n = nHn−1.

? Hermite polynomials are a complete set of orthogonal poly-
nomials for the standard Gaussian density on the real line.
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ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

? Now select h ∈ L2(µ) such that ‖h‖L2(µ = 1. For n ≥ 1
we apply the multiplication formula to the two integrals
IG
n (h⊗n) and IG

1 (h):

IG
n (h

⊗n)× IG
1 (h) = IG

n+1(h
⊗(n+1)) + nIG

n−1(h
⊗(n−1)).

? Since IG
1 (h) = H1[IG

1 (h)], we obtain the important formula

IG
n (h

⊗n) = Hn[IG
1 (h)], ∀n ≥ 1.

? Remark: In the Poisson case, similar connections (but less
elegant and less exhaustive) can be established with the class
of Charlier polynomials.

60 / 90



ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

? Now select h ∈ L2(µ) such that ‖h‖L2(µ = 1. For n ≥ 1
we apply the multiplication formula to the two integrals
IG
n (h⊗n) and IG

1 (h):

IG
n (h

⊗n)× IG
1 (h) = IG

n+1(h
⊗(n+1)) + nIG

n−1(h
⊗(n−1)).

? Since IG
1 (h) = H1[IG

1 (h)], we obtain the important formula

IG
n (h

⊗n) = Hn[IG
1 (h)], ∀n ≥ 1.

? Remark: In the Poisson case, similar connections (but less
elegant and less exhaustive) can be established with the class
of Charlier polynomials.

60 / 90



ORTHOGONAL POLYNOMIALS: GAUSSIAN CASE

? Now select h ∈ L2(µ) such that ‖h‖L2(µ = 1. For n ≥ 1
we apply the multiplication formula to the two integrals
IG
n (h⊗n) and IG

1 (h):

IG
n (h

⊗n)× IG
1 (h) = IG

n+1(h
⊗(n+1)) + nIG

n−1(h
⊗(n−1)).

? Since IG
1 (h) = H1[IG

1 (h)], we obtain the important formula

IG
n (h

⊗n) = Hn[IG
1 (h)], ∀n ≥ 1.

? Remark: In the Poisson case, similar connections (but less
elegant and less exhaustive) can be established with the class
of Charlier polynomials.

60 / 90



CHAOTIC DECOMPOSITION

The following statement applies to M = G, η̂.

Theorem (Chaotic decomposition)
For every F ∈ L2(σ(M), P),

F = E[F] + ∑
n≥1

IM
n ( fn),

where fn ∈ L2
s (ν

n), the decomposition is unique, and the series is
converging in L2(P). In compact Fock space notation,

L2(σ(M), P) = R⊕
⊕
n≥1

Cn ' R⊕
⊕
n≥1

√
n!L2

s (ν
n),

where Cn stands for the nth Wiener chaos of M.
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DIAGRAM FORMULAE: MOMENTS

We consider, integers n1, ..., nk ≥ 1, write n = n1 + · · ·+ nk, and
consider the partition π∗ ∈ Pn given by

π∗ = {{1, ..., n1}, {n1 + 1, ..., n1 +n2}, ...., {n1 + · · · nk−1 + 1, ..., n}}.

Theorem (Diagram Formulae for Moments)
For adequate symmetric kernels f1, ..., fk (for instance, simple and
symmetric):

E

[
k

∏
j=1

IM
nj
( f j)

]
= ∑

σ∧π∗=0̂

∫
Zn
( f1 ⊗ · · · ⊗ fk)

[⊗
b∈σ

d
〈

∆M
|b|

〉]
,

where:
〈

∆M
|b|

〉
= E[∆M

|b|].
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DIAGRAM FORMULAE: CUMULANTS

We consider, integers n1, ..., nk ≥ 1, write n = n1 + · · ·+ nk, and
consider the partition π∗ ∈ Pn given by

π∗ = {{1, ..., n1}, {n1 + 1, ..., n1 +n2}, ...., {n1 + · · · nk−1 + 1, ..., n}}.

Theorem (Diagram Formulae for Cumulants)
For adequate symmetric kernels f1, ..., fk (for instance, simple and
symmetric):

χ(IM
n1
( f1), ..., IM

nk
( fk))

= ∑
σ∧π∗=0̂ ; σ∨π∗=1̂

∫
Zn
( f1 ⊗ · · · ⊗ fk)

[⊗
b∈σ

d
〈

∆M
|b|

〉]
.

The difference with the expression for moments resides in the
additional constraint σ ∨ π∗ = 1̂.
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PROOFS (SKETCH).

? The formula for moments is a direct consequence of multi-
plicativity.

? The formula for cumulants follows from the relation below
(which is a – not so immediate! – consequence of Leonov
and Shyraev formulae):

χ
(

IM
n1
( f1) , · · ·, IM

nk
( fk)

)
= ∑

π∗4ρ=(r1,...,rl)∈Pn

µ
(
ρ, 1̂
)

∑
γ4ρ

γ∧π∗=0̂

⊗
b∈γ

〈
∆M
|b|

〉
( f1 ⊗ · · · ⊗ fk) ,

after exchanging the order of summation.
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USING THE FORMULA: GAUSSIAN CASE

? Recall that ∆G
2 = ν and ∆G

n = 0, for n > 2, meaning that
the only contribution to the formulae comes from non-flat
perfect matchings.

? Consider kernels f1, ..., fk and build the tensor product f1 ⊗
· · · ⊗ fk. This a function of n = n1 + · · ·+ nk = n variables;
we assume n even (otherwise the formula gives zero).

? For every perfect matching γ ∈ Mn, build the function Fγ,
of n/2 variables by identifying two variables xi, xj in the
argument of f1 ⊗ · · · ⊗ fk whenever i ∼γ j.

? Then,

E
(

IG
n1
( f1)× · · · × IG

nk
( fk)

)
= ∑

γ∈Mn :γ∧π∗=0̂

∫
Zn/2

Fγ dνn/2

χ
(

IG
n1
( f1) , · · ·, IG

nk
( fk)

)
= ∑

γ∈Mn
γ∧π∗=0̂ ; γ∨π∗=1̂

∫
Zn/2

Fγ dνn/2
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EXAMPLE

Consider the case n = 6, and

π? = {{1}, {2, 3}, {4, 5, 6}}.

Then, the perfect matching

γ = {{1, 6}, {2, 4}, {3, 5}}

verifies γ ∧ π? = 0̂, and γ ∨ π? = 1̂.
Also,

f1 ⊗ f2 ⊗ f3(x1, ..., x6) = f1(x1) f2(x2, x3) f3(x4, x5, x6),

and
Fγ(x1, x2, x3) = f1(x1) f2(x2, x3) f3(x2, x3, x1).
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DOUBLE GAUSSIAN INTEGRALS, I

? For every m ≥ 2, we want to compute

χm(IG
2 ( f )) = χ(IG

2 ( f ), ..., IG
2 ( f )︸ ︷︷ ︸

m times

),

for a generic symmetric kernel f .
? By the theorem,

χm(IG
2 ( f )) = ∑

γ∈M2m
γ∧π∗=0̂ ; γ∨π∗=1̂

∫
Zm

Fγ dνm,

where π? = {{1, 2}, {3, 4}, ..., {2m− 1, 2m}} = {{2j− 1, 2j} :
j = 1, ..., m}, and Fγ is obtained from

f ⊗ · · · ⊗ f︸ ︷︷ ︸
m times

.
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DOUBLE GAUSSIAN INTEGRALS, II

For every m ≥ 2, M2m contains exactly
2m−1(m− 1)! solutions γ to the system{

π? ∧ γ = 0̂
π? ∨ γ = 1̂

,

where

π? = {{2j− 1, 2j} : j = 1, ..., n}.

Up to a permutation of variables, each so-
lution generates the same function Fγ.
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DOUBLE GAUSSIAN INTEGRALS, III

Proposition
For f symmetric and square-integrable,

χm(IG
2 ( f )) = 2m−1(m− 1)!×∫

Zm
f (x1, x2) f (x2, x3) · · · f (xm, x1)ν

m(dx1, · · · , dxm)

= 2m−1(m− 1)!Trace(Hm
f ),

where Hm
f is the Hilbert-Schmidt operator

h 7→Hm
f (h) :=

∫
Z

h(x) f (•, x)ν(dx).
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USING THE FORMULA: POISSON CASE

? Recall that 〈∆η̂
n〉 = ν for n ≥ 2, meaning that non-flat parti-

tions with no singletons contribute to the formulae. Such
a class is denoted by P0

n .
? Consider kernels f1, ..., fk and build the tensor product f1 ⊗
· · · ⊗ fk. This a function of n = n1 + · · ·+ nk = n variables.

? For every γ ∈ P0
n , build the function Fγ by identifying

those variables in the argument of f1 ⊗ · · · ⊗ fk that are in
the same block of γ.

? Then,

E
(

I η̂
n1 ( f1)× · · · × I η̂

nk ( fk)
)
= ∑

γ∈P0
n : γ∧π∗=0̂

∫
Z|γ|

Fγ dν|γ|

χ
(

I η̂
n1 ( f1) , · · ·, I η̂

nk ( fk)
)
= ∑

γ∈P0
n :

γ∧π∗=0̂ ; γ∨π∗=1̂
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EXAMPLE

Fix m ≥ 2. If π? = 0̂, then γ = 1̂ is the only
solution to the system{

π? ∧ γ = 0̂
π? ∨ γ = 1̂

,

meaning that

χm(I η̂
1 (h)) =

∫
Z

h(z)m ν(dz).

This also follows from:

E
[
eitI η̂

1 (h)
]
= exp

{∫
Z
(eith(z) − 1− ith(z))ν(dz)

}
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PART 5:
LIMIT THEOREMS
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A CLASSICAL RESULT

Theorem (Method of moments and cumulants)
Let X be a random variable whose distribution is determined by the
moments, and let {Xn : n ≥ 1} be a sequence of random variables with
finite moments of all orders such that, for all integers m ≥ 1, either

E[Xm
n ] −→ E[Xm], n→ ∞,

or
χm(Xn) −→ χm(X), n→ ∞.

Then,
Xn

LAW−→ X.

Remark. If X ∼ N (0, 1), then χ2(X) = Var(X) = 1 and
χm(X) = 0 for every m 6= 2.
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FOURTH MOMENT THEOREM — GAUSSIAN CASE

Theorem (Nualart and Peccati, 2005)
Let q ≥ 2 and {IG

q ( fn) : n ≥ 1} be such that E[IG
q ( fn)2] = 1. Then,

the following are equivalent, as n→ ∞:

(1) IG
q ( fn)

LAW−→ X ∼ N (0, 1)

(2) χ4(IG
q ( fn))→ 0

(3) E(IG
q ( fn)4)→ 3

Remarks. The implication (1)⇒ (2)⇔ (3) are trivial.
Free version by Kemp, Nourdin, Peccati and Speicher (2012).
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FOURTH MOMENT THEOREM — POISSON CASE

Theorem (Döbler and Peccati, 2017; Döbler, Vidotto and
Zheng, 2017)
Let q ≥ 1 and {I η̂

q ( fn) : n ≥ 1} be such that E[I η̂
q ( fn)2] = 1. If

χ4(I η̂
q ( fn))→ 0, then

I η̂
q ( fn)

LAW−→ X ∼ N (0, 1).

Remark. Free version by Bourguin and Peccati (2014).
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PROOF — SQUARES

? Call A the algebra composed of finite linear combinations of
multiple integrals IG

p (g), where p ≥ 0 and g is symmetric.

? Write Cm for the mth Wiener chaos of G (Cm ⊂ A).

? The product formula yields that

IG
q ( fn)

2 =
q

∑
m=0

proj(Iq( fn)
2 |C2m),

with proj(Iq( fn)2 |C0) = E[IG
q ( fn)2] = 1 by definition.
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PROOF — FOURTH MOMENTS

? By orthogonality,

E[IG
q ( fn)

4] = 1 +
q−1

∑
m=1

E[proj(Iq( fn)
2 |C2m)

2]

+E[proj(Iq( fn)
2 |C2q)

2]

Lemma (Nualart & Peccati, 2005)

E[proj(Iq( fn)
2 |C2q)

2] = 2 + (q!)2
q−1

∑
r=1

(
q
r

)2

‖ fn ⊗r fn‖;2

χ4(Iq( fn)) ≥ Kq max
r=1,...,q−1

‖ fn ⊗r fn‖2;

χ4(Iq( fn)) ≥ Kq max
m=1,...,q−1

E[proj(Iq( fn)
2 |C2m)

2].
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PROOF — CARRÉ-DU-CHAMP

? Introduce the operator L (generator of the Ornstein-Uhlenbeck
semigroup) on A by the relation

L(IG
p (g)) = −pIG

p (g), and then extend by linearity.

? Define the carré-du-champ operator

Γ(F, J) =
1
2
[L(FJ)− JLF− FLJ] ,

for which
E[FLJ] = −E[Γ(F, J)].

? Fact. Γ is diffusive: for every polynomial P and every F, J ∈
A

Γ(P(F), J) = P′(F)Γ(F, J)

(Check by hand, using the product formula)
78 / 90



PROOF — CARRÉ-DU-CHAMP

? Introduce the operator L (generator of the Ornstein-Uhlenbeck
semigroup) on A by the relation

L(IG
p (g)) = −pIG

p (g), and then extend by linearity.

? Define the carré-du-champ operator

Γ(F, J) =
1
2
[L(FJ)− JLF− FLJ] ,

for which
E[FLJ] = −E[Γ(F, J)].

? Fact. Γ is diffusive: for every polynomial P and every F, J ∈
A

Γ(P(F), J) = P′(F)Γ(F, J)

(Check by hand, using the product formula)
78 / 90



PROOF — CARRÉ-DU-CHAMP

? Introduce the operator L (generator of the Ornstein-Uhlenbeck
semigroup) on A by the relation

L(IG
p (g)) = −pIG

p (g), and then extend by linearity.

? Define the carré-du-champ operator

Γ(F, J) =
1
2
[L(FJ)− JLF− FLJ] ,

for which
E[FLJ] = −E[Γ(F, J)].

? Fact. Γ is diffusive: for every polynomial P and every F, J ∈
A

Γ(P(F), J) = P′(F)Γ(F, J)

(Check by hand, using the product formula)
78 / 90



END OF THE PROOF — SMART PATHS

? Write F = IG
q ( fn), and choose a polynomial P. Assume that

F and X ∼ N (0, 1) are independent.

? Then, |E[P(F)]−E[P(X)]| ≤ ‖Ψ′‖∞, where (t ∈ [0, 1])

Ψ(t) := E[P(
√

tF +
√

1− tX)] := E[P(Ft)].

? One has that

|Ψ′(t)| =
1
2

∣∣∣∣1q E[Γ(F, F)P′′(Ft)]−E[P′′(Ft)]

∣∣∣∣
≤ KVar[Γ(F, F)/q]1/2.

? Conclude by using the relations

Γ(F, F)
q

=
1
2q
{L(F2) + 2qF2} =

q−1

∑
m=0

q−m
q

proj(F2 |C2m).
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ALTERNATE ENDING — COMBINATORIAL

For every even integer m such
that qm is even, and for every
γ ∈ Mqm such that{

π? ∧ γ = 0̂
π? ∨ γ = 1̂

,

one can write∫
Fγ =

∫
( f ⊗r f ) H,

for some r = 1, ..., q− 1, where
‖H‖ ≤ 1.

The conclusion follows by applying Cauchy-Schwarz to every γ.

80 / 90



ALTERNATE ENDING — COMBINATORIAL

For every even integer m such
that qm is even, and for every
γ ∈ Mqm such that{

π? ∧ γ = 0̂
π? ∨ γ = 1̂

,

one can write∫
Fγ =

∫
( f ⊗r f ) H,

for some r = 1, ..., q− 1, where
‖H‖ ≤ 1.

The conclusion follows by applying Cauchy-Schwarz to every γ.

80 / 90



JOINT GAUSSIANITY — PECCATI & TUDOR, 2005

Theorem (Joint Gaussian Convergence)
For d ≥ 2, let

Fn = (Fn,1, ..., Fn,d) := (IG
q1
( f 1

n), ..., IG
qd
( f d

n )), n ≥ 1,

be such that Cov(Fn)→ Σ ≥ 0, as n→ ∞. Then, the following are
equivalent, as n→ ∞,

(1) Fn
LAW→ X ∼ Nd(0, Σ) ;

(2) For every i = 1, ...d, Fn,i
LAW→ Xi ∼ N (0, Σ(i, i)).

Remark. Similar results on the Poisson space: Peccati and
Zheng (2010), Döbler, Vidotto and Zheng (2017).
Free versions: Nourdin, Peccati and Speicher (2013).
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INDEPENDENCE – NOURDIN AND ROSINSKI, 2010 ;
NOURDIN, NUALART AND PECCATI, 2013

Theorem (Asymptotic independence)
Let

Fn = IG
q ( fn), Jn = IG

p (gn), n ≥ 1.

be such that Fn and Jn converge in distribution. Then, the following
are equivalent as n→ ∞ :

(1) Fn and Jn are asymptotically independent ;
(2) Cov(F2

n , J2
n)→ 0.

Remark.
Results of this type are still unkown on the Poisson space.
Free version: Bourguin and Nourdin (2017)
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PART 6:
A GEOMETRIC EXAMPLE
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A MODEL (BERRY, 1977)

? Fix E > 0. The Berry random wave model on R2 with
parameter E, written

BE = {BE(x) : x ∈ R2},

is defined as the unique (in law) centred, isotropic Gaussian
field on R2 such that

∆BE + 4π2E · BE = 0, where ∆ =
∂2

∂x2
1
+

∂2

∂x2
2

.

? Equivalently, E[BE(x)BE(y)] = J0(2π
√

E‖x− y‖) (J0 = Bessel
function of the 1st kind ) or

BE(x) =
1√
2π

∫
S1

e2iπ
√

E〈z,x〉 G(dz),

where G := Hermitian Gaussian measure on the unit circle.
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NODAL SETS

We are interested in the high-energy (as E→ ∞) geometry of the
nodal sets (components are the nodal lines):

B−1
E ({0}) ∩D := {x ∈ D : BE(x) = 0},

where D is a compact set with piecewise smooth boundary. In
particular, in

LE := length B−1
E ({0}) ∩D

From: Belyaev (2016)
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SOME MOTIVATIONS

? Geometric study of excursion sets of isotropic random fields.
? An amplification of Berry’s universality conjecture (1977)

states that the high-energy behaviour of Laplace eigenfunc-
tions on a Riemaniann surface coïncides with the average
behaviour of the Random Wave Model on a comparable pla-
nar domain (see Zelditch, 2009). Used to heuristically test
open problems on the geometry of deterministic nodal sets,
like e.g. Yau’s conjecture.
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MEAN AND VARIANCE

? Berry (J. Stat. Physics A, 2002) : semi-rigorous computations
lead to:

E[LE] =
2π
√

E
2
√

2
, Var(LE) ∼

areaD
512π

log E,

although the natural guess for the order of the variance is ∼√
E. Such a variance reduction “... results from a cancellation

whose meaning is still obscure... ” (Berry (2002), p. 3032).

? Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (Comm. Math. Ph., 2007)).
Similar cancellations proved on the flat torus by Krishnapur,
Kurlberg and Wigman (Ann. Math., 2013).

? Write

L̃E :=
LE −E(LE)

Var(LE)1/2 .
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E. Such a variance reduction “... results from a cancellation

whose meaning is still obscure... ” (Berry (2002), p. 3032).

? Constants rigorously confirmed in the model of random
spherical harmonics (Wigman (Comm. Math. Ph., 2007)).
Similar cancellations proved on the flat torus by Krishnapur,
Kurlberg and Wigman (Ann. Math., 2013).
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A RESULT

Theorem (Nourdin, Peccati & Rossi, 2017)

1. (Cancellation) For every fixed E > 0,

proj(LE |Chaos2q+1) = 0, q ≥ 0,

and proj(L̃E |Chaos2) reduces to a “negligible boundary term”,
as E→ ∞.

2. (4th chaos dominates) Let E→ ∞. Then,

L̃E = proj(L̃E |Chaos4) + oP(1).

3. (CLT) As E→ ∞,
L̃E ⇒ Z ∼ N(0, 1).
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PLOT TWIST

? The fourth chaos dominance continues to hold on more
general manifolds (spheres, tori, ...), and generates variance
cancellations.

? The nodal length on the sphere verifies a CLT (Marinucci,
Rossi and Wigman, 2017)

? The nodal length on the flat torus verifies a non-universal
& non-central limit theorem (Marinucci, Peccati, Rossi and
Wigman, GAFA 2017)

? Locally, everything behaves like Berry’s model (and there-
fore has Gaussian fluctuations), see Canzani & Hanin, 2016.

? How these phenomena are connected to the geometry of the
manifold?
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FINAL WORDS

Thank you for your attention !

(Sorry I have to leave... )
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