
An application to random geometric graphs
(Santander, July 17-19 2017, by G. Peccati)

I – Setting. Fix an integer d ≥ 2. For every n ≥ 1, we denote by ηn a Poisson measure
on (Rd,B(Rd)) with intensity given by

νn(dx) = n× p(x)dx,

where p is a continuous and bounded probability density on Rd ; as in the lectures, we
set η̂n = ηn − νn. We consider a sequence of positive numbers {sn : n ≥ 1} ; for every n,
we define the (undirected) random geometric graph Gn := (Vn, En) as follows :

Vn = supp(ηn),

where supp(ηn) indicates the support of ηn (in our case, this is the random set composed
of those x ∈ Rd that are charged by ηn), and {x, y} ∈ En if and only if ‖x− y‖ ∈ (0, sn]
(note that, by construction, this graph has no loops). The graph Gn is sometimes called
a (Euclidean) Gilbert graph.
Remark on notation. All norms below have to be understood with respect to the
intensity measure νn or its powers (the context will be always clear).
Our aim in this document is to understand the behaviour of the quantity

En := |En| (number of edges in Gn),

as n→∞, under the particular assumption that

nsdn → 0 (implying sn → 0). (0.1)

II – Chaos expansion and mean. For every n, write

fn(x, y) =
1

2
1{‖x−y‖∈(0,sn]}.

Our first step is the simple observation that

En =

∫
Rd

∫
Rd
fn(x, y)ηn(dx)ηn(dy)

=

∫
Rd

∫
Rd
fn(x, y)νn(dx)νn(dy) + I η̂n1 (gn) + I η̂n2 (fn)

= ν2n(fn) + I η̂n1 (gn) + I η̂n2 (fn),
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where gn(x) = 2
∫
Rd fn(x, y)νn(dy), from which it follows that

E[En] = νn(fn) =
n2

2

∫
Rd

∫
Rd
p(x)p(y)1{0<‖x−y‖≤sn}dxdy

=
n2sdn
2

∫
Rd

∫
Rd
p(a)p(a+ snb)1{0<‖b‖≤1}dadb

∼ α× n2sdn

where we used the change of variables a = x and b = (x− y)/sn, and

α :=
Vol(B1)

2

∫
Rd
p(a)2da,

with B1 the unit ball in Rd.
III – Case n2sdn →∞. Computations similar to those above show that

E[I η̂n1 (gn)
2] = ‖gn‖2 = 4n3

∫
Rd

∫
Rd

∫
Rd
p(x)p(y)p(z)1{‖x−y‖≤sn}1{‖x−z‖≤sn}dxdydz

∼ βn3(sdn)
2 = o(n2sdn), (0.2)

where β > 0 is some finite absolute constant whose value is immaterial for our discussion.
On the other hand

E[I η̂n2 (fn)
2] = 2‖fn‖2 = νn(fn) ∼ αn2sdn.

This computation yields in particular that

Var(En) ∼ E[En] ∼ αn2sdn,

and consequently that the limit in distribution of the normalized quantity

Ẽn :=
En − E[En]

Var(En)1/2

is the same as that of
I η̂n2 (fn)

(αn2sdn)
1/2

= I η̂n2 (hn) := Yn,

where hn := fn/(αn
2sdn)

1/2.
Our aim is now to prove that, as n → ∞, Yn converges in law to a standard Gaussian
random variable. In order to prove this, we write

π? = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} ∈ P8,
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and recall from the lectures that the desired conclusion would follow, if we could prove
that, for every γ ∈ P8 such that γ ∨ π? = 1̂ and γ ∧ π? = 0̂,∫

(Rd)|γ|
(Hn)γ dν

|γ|
n −→ 0, n→∞,

where (Hn)γ is the function in |γ| variables, obtained by identifying variables in the same
block of γ into the argument of the tensor product hn⊗hn⊗hn⊗hn (which is a function
in 8 variables). We will say that two partitions σ, ρ ∈ Pn have the same type if |σ| = |ρ|,
and

(Hn)σ(x1, ..., x|σ|) = (Hn)ρ(xw(1), ..., xw(|σ|)),

for some permutation w of {1, ..., |σ|}. It is easily checked that, if γ ∈ Pn verifies γ∨π? = 1̂
and γ ∧ π? = 0̂, then necessarily γ has the same type as one of the partitions γ1, γ2, γ3
and γ4 whose blocks are represented as gray shapes in Fig. 1.

Figure 1 – The partitions γ1, γ2, γ3 and γ4

If γ ∈ Pn verifies γ ∨ π? = 1̂ and γ ∧ π? = 0̂, then |γ| ∈ {2, 3, 4}, and computations
similar to the ones above yield that∫

(Rd)|γ|
(Hn)γ dν

|γ|
n ∼ κ

n|γ|(sdn)
|γ|−1

n4(sdn)
2
→ 0, n→∞,

where κ is some absolute positive constant.
As anticipated, this relation allows us to conclude that, as n → ∞, both Yn and Ẽn

converge in distribution to a standard Gaussian random variable.
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IV – Case n2sdn → c ∈ [0,∞). If c = 0, then it is easily seen that, as n→∞, the random
variable En converges to 0 in L1(P). We can therefore assume that n2sdn → c ∈ (0,∞).
In view of the computations in the previous sections, we know already that

Var(En), E[En] −→ αc,

and also that (since (0.2) continues to hold when n2sdn converges to a finite limit) the
limit in distribution of En coincides with that of

Zn := αc+ I η̂n2 (fn), n ≥ 1.

We will prove that Zn converges in distribution to a Poisson random variable with para-
meter αc. In order to see this, we fix an integer m ≥ 2, and consider the partition

π? = {{1, 2}, {3, 4}, ..., {2m− 1, 2m}} ∈ P2m.

According to the lectures,

χm(Zn) =
∑∫

(Rd)|γ|
(Fn)γ dν

|γ|
n ,

where the sum runs over all γ ∈ P2m such that γ ∧ π? = 0̂, and γ ∨ π? = 1̂, and (Fn)γ is
the function in |γ| variables obtained by identifying those elements in the argument of

fn ⊗ · · · ⊗ fn︸ ︷︷ ︸
m times

that are in the same block of γ. Computations analogous to those performed above show
that, if γ verifies the desired relations and |γ| > 2, then∫

(Rd)|γ|
(Fn)γ dν

|γ|
n → 0.

On the other hand, there are exactly 2m−1 partitions with two blocks verifying γ∧π? = 0̂,
and γ ∨ π? = 1̂, and for each of them∫

(Rd)|γ|
(Fn)γ dν

|γ|
n →

Vol(B1)

2m

∫
Rd
p(a)2da.

This implies that χm(Zn)→ αc for every integer m ≥ 1, and therefore that Zn converges
in distribution to a Poisson random variable with parameter αc (recall that the Poisson
distribution is determined by its moments).
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V – Further remarks. The first paper using the asymptotic properties of multiple
Wiener-Itô integrals for dealing with models of stochastic geometry is :
? M. Reitzner and M. Schulte (2013). Central limit theorems for U-statistics of Poisson
point processes, Ann. Probab. 41, 3879-3909
The literature on the matter has evolved very quickly, see e.g. the recent collective mo-
nograph
? G. Peccati and M. Reitzner (Editors) (2016). Stochastic analysis for Poisson point
processes : Malliavin calculus, Wiener-Itô chaos expansions and stochastic geometry.
Springer-Verlag.
A parallel study of convergence results, similar to the ones described in this section, both
for classical and non-commutative Poisson measures can be found here :
? S. Bourguin and G. Peccati (2014). Semicircular limits on the free Poisson chaos :
counterexamples to a transfer principle. Journal of Functional Analysis, 267(4), 963-997
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