Lagrangian Submanifolds and Constrained Variational Calculus

Fernando Jiménez

ICMAT (CSIC-UAM-UCM-UC3M), Madrid, Spain.

Rough Paths and Combinatorics in Control Theory Meeting.

University of California, San Diego 26th July, 2011

Work in collaboration with David Martín de Diego (ICMAT-CSIC) and Manuel de León (ICMAT-CSIC)

"Everything is a Lagrangian Submanifold."

Alan Weinstein.

Introduction

Lagrangian Submanifolds are very useful!!

Definition

R. Abraham and J.E. Marsden. "Foundations of Mechanics" (1978)

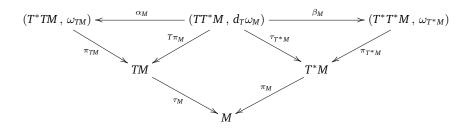
• What is a Lagrangian Submanifold (LS)?

If (M, ω) is a symplectic manifold of finite dimension, $N \subset M$ submanifold, $i_N : N \hookrightarrow M$:

- $i_N^* \omega = 0$
- $\dim N = \frac{1}{2} \dim M$
- Examples:
 - $g: M \to M$ is a symplectomorphism, then $\operatorname{Graph}(g) = \{(x, g(x)), x \in M\} \subset (M \times M, \Omega = pr_1^* \omega pr_0^* \omega) \Rightarrow i_g: \operatorname{Graph}(g) \hookrightarrow M \times M \text{ is a LS.}$
 - $f: M \to \mathbb{R} \Rightarrow df(M) \subset (T^*M, \omega_M)$ is a LS. If (q, p) are local coord. for T^*M , by Darboux Theorem $\omega_M = dq \wedge dp$.
 - (T^*M, ω_M) , $H: T^*M \to \mathbb{R}$, $i_{X_H}\omega_M = dH \Rightarrow X_H(T^*M) \subset (TT^*M, d_T\omega_M)$ is a LS.

Tulczyjew Triple

• Tulczyjew Triple (1976):



• $\beta_M = \flat_{\omega_{T^*M}}$, $\beta_{\omega_{T^*M}}(\nu) = i_{\nu}\omega_{T^*M}$, where $\nu \in TT^*M \Rightarrow$

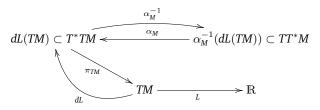
$$\beta_M(q^i, p_i, \dot{q}^i, \dot{p}_i) = (q^i, p_i, -\dot{p}_i, \dot{q}^i).$$

• $\langle \alpha_M(z), w \rangle = \langle z, \kappa_M(w) \rangle$, where $z \in TT^*M$ and $w \in TTM$,

$$\alpha_M(q^i, p_i, \dot{q}^i, \dot{p}_i) = (q^i, \dot{q}^i, \dot{p}_i, p_i).$$

Intrinsic description of Lag. and Ham. Mechanics

• $L: TM \to \mathbb{R}$, then $dL(TM) \subset T^*TM$ is a LS. Moreover, given that α_M is a symplectomorphism, $\alpha_M^{-1}(dL(TM)) \subset TT^*M$ is a LS.



• The solutions of the dynamics of $\alpha_M^{-1}(dL(TM))$ are curves $\gamma:I\subset\mathbb{R}\to T^*M$ s.t. $\frac{d\gamma}{dt}:I\subset\mathbb{R}\to TT^*M$ verifies $\frac{d\gamma}{dt}(I)\subset\alpha_M^{-1}(dL(TM))$. Locally

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0.$$

Question

First Question

Is there a way to describe constrained Lagrangian Mechanics through Lagrangian Submanifolds and, moreover, to relate that dynamics with a Hamiltonian system?

Lagrangian Mechanics with Constraints

• Constrained Lagrangian System (CLS): $C \subset TM$ and a Lag. function $L: C \to \mathbb{R}$. Locally C is described by a set of constraints $\phi^{\alpha}: TM \to \mathbb{R}$.

Theorem (Tulczyjew)

Let M be a smooth manifold, $N \subset M$ a submanifold, and $f: N \to \mathbb{R}$ a smooth function. Then

$$\Sigma_f = \left\{ p \in T^*M \mid \pi_M(p) \in N \text{ and } \langle p, \nu \rangle = \langle \mathrm{d}f, \nu \rangle \right.$$
 for all $\nu \in TN \subset TM$ such that $\tau_M(\nu) = \pi_M(p) \right\}$

is a Lagrangian submanifold of T^*M .

• Hence, $\boxed{\Sigma_L \in (T^*TM\,,\,\omega_{TM})}$ is a LS. Moreover, $\boxed{\alpha_M^{-1}(\Sigma_L) \subset (TT^*M\,,\,d_T\omega_M)}$ also is, which means DYNAMICS!. Locally $\mathbb{L} = \tilde{L} + \lambda_\alpha \phi^\alpha : TM \to \mathbb{R}$,

$$\frac{d}{dt} \left(\frac{\partial \tilde{L}}{\partial \dot{q}^{i}} + \lambda_{\alpha} \frac{\partial \phi^{\alpha}}{\partial \dot{q}^{i}} \right) - \frac{\partial \tilde{L}}{\partial q^{i}} - \lambda_{\alpha} \frac{\partial \phi^{\alpha}}{\partial q^{i}} = 0$$

$$\phi^{\alpha} (q^{i}, \dot{q}^{i}) = 0$$

From Constrained Lagrangian Mechanics to Hamiltonian Mechanics

Constrained Legendre Transformation

 $\mathbb{F}L: \Sigma_L \longrightarrow T^*M$ as the mapping $\mathbb{F}L = \tau_{T^*M} \circ (\alpha_M^{-1})|_{\Sigma_L}$.

We will say that (L,C) is regular if $\mathbb{F}L$ is a local diffeomorphism and hyperregular if $\mathbb{F}L$ is a global diffeomorphism.

- $E_L: \Sigma_L \to \mathbb{R}$, $E_L(\alpha_u) = \langle \alpha_u, u_u^V \rangle L(u)$, where $\alpha_u \in \Sigma_L$, $u \in C$ and $u_u^V \in TC \subset TTM$.
- Define $\omega_L = (\mathbb{F}L)^* \omega_M$ on $\Sigma_L \Rightarrow i_X \omega_L = dE_L$.
- ullet If (L,C) is hyperrregular, we can define a Hamiltonian function $H:T^*M \to \mathbb{R}$ by

$$H = E_L \circ (\mathbb{F}L)^{-1}$$

such that $i_{X_H}\omega_M=dH$.

$$\Sigma_L \Rightarrow X_H(T^*M)$$

From Constrained Lagrangian Mechanics to Hamiltonian Mechanics

Constrained Legendre Transformation

 $\mathbb{F}L: \Sigma_L \longrightarrow T^*M$ as the mapping $\mathbb{F}L = \tau_{T^*M} \circ (\alpha_M^{-1})|_{\Sigma_L}$.

We will say that (L,C) is regular if $\mathbb{F}L$ is a local diffeomorphism and hyperregular if $\mathbb{F}L$ is a global diffeomorphism.

- $E_L: \Sigma_L \to \mathbb{R}$, $E_L(\alpha_u) = \langle \alpha_u, u_u^V \rangle L(u)$, where $\alpha_u \in \Sigma_L$, $u \in C$ and $u_u^V \in TC \subset TTM$.
- Define $\omega_L = (\mathbb{F}L)^* \omega_M$ on $\Sigma_L \Rightarrow i_X \omega_L = dE_L$.
- ullet If (L,C) is hyperrregular, we can define a Hamiltonian function $H:T^*M \to \mathbb{R}$ by

$$H=E_L\circ (\mathbb{F}L)^{-1}$$

such that $i_{X_H}\omega_M=dH$.

$$\alpha_M^{-1}(\Sigma_L) = X_H(T^*M)$$

From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

• $H: T^*M \to \mathbb{R}$. Since $\pi_M: T^*M \to M$ is a vector bundle, define the dilation vector field $\Delta^* \in \mathfrak{X}(T^*M)$:

$$\Delta^*(\alpha_q)f = \frac{d}{dt}\Big|_{t=0} f(t\alpha_q), \quad \Delta^* = p_i \frac{\partial}{\partial p_i}.$$

• Define the fiber derivative $\mathbb{F}H: T^*M \to TM$

$$\langle \mathbb{F}H(\alpha_q), \beta_q \rangle = \frac{d}{dt}\Big|_{t=0} H(\alpha_q + t\beta_q), \quad \mathbb{F}H(q^i, p_i) = (q^i, \frac{\partial H}{\partial p_i}).$$

• Assume $\mathbb{F}H(T^*M)=C$ is a submanifold $\subset TM\Rightarrow$ Mimicking the Gotay and Nester's definition, we set $L:C\to\mathbb{R}$ such that

$$L \circ \mathbb{F}H = \Delta^*H - H.$$

• $\mathbb{F}H(\alpha_q) = \mathbb{F}H(\beta_q)$ or equivalently $(\Delta^*H - H)(\alpha_q) = (\Delta^*H - H)(\beta_q)$. Extra assumption

Definition

A Hamiltonian $H: T^*M \to \mathbb{R}$ is **almost-regular** if $\mathbb{F}H(T^*M) = C$ is a submanifold of TM and $\mathbb{F}H: T^*M \to C \subset TM$ is a submersion with connected fibers.

From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

• Under this assumption we can consider the infinitesimal condition, i.e.

$$\mathcal{L}_Z(\Delta^*H - H) = 0, \ \forall \ Z \in \ker(\mathbb{F}H_*).$$

• This is the case, hence *L* is well defined.

Theorem

The following equivalence holds

$$\alpha_M(X_H(T^*M)) = \Sigma_L .$$

Sketch of the Poof

For any $W_1 \in X_H(T^*M)$

$$\langle \alpha_M(W_1), U \rangle = \langle dL, U \rangle \ \forall U \in TC.$$

This is equivalent to prove

$$\langle \alpha_M(W_1), \mathbb{F}H_*(W_2) \rangle = \langle dL, \mathbb{F}H_*(W_2) \rangle \ \forall W_2 \in TT^*M.$$

$$\mathbb{F}H^*\alpha_M(W_1) = \mathbb{F}H^* dL = d(\Delta^*H - H).$$

From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

$$TT^*M \supset X_H(T^*M) \xrightarrow{\alpha_M} \alpha_M(X_H(T^*M)) = \Sigma_L \hookrightarrow T^*TM$$

$$\downarrow^{X_H} \uparrow \qquad \qquad \downarrow^{dL}$$

$$T^*M \qquad \qquad C \subset TM$$

$$\downarrow^L \qquad \qquad \mathbb{R}$$

ANY DISCRETE EQUIVALENCE?

Brief Introduction to Discrete Mechanics

J.E. Marsden and M. West: "Discrete Mechanics and Variational Integrators" (2001)

• *M* is a *n*-dimensinal smooth manifold (q^i) , and *TM* its tangent bundle (q^i, \dot{q}^i) .

 $L:TM\to\mathbb{R}$:

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}^i}\right) - \frac{\partial L}{\partial q^i} = 0, \quad 1 \le i \le n.$$

• Discrete Mechanics: $TM \Rightarrow M \times M$. Moreover $L_d : M \times M \to \mathbb{R}$:

$$L_d(q_0,q_1) pprox \int_0^h L(q(t),\dot{q}(t)) dt$$

• Define the sequences $(q_0,...,q_N) \in M^{N+1}$ and the action sum $S_d = \sum_{k=1}^N L_d(q_{k-1},q_k)$.

$$D_1L_d(q_k, q_{k+1}) + D_2L_d(q_{k-1}, q_k) = 0.$$

This equations define a discrete flow $\phi_{L_d}: M \times M \to M \times M$, $\phi_{L_d}(q_{k-1},q_k) = (q_k,q_{k+1})$, under regularity assumptions.

Brief Introduction to Discrete Mechanics

• Go into a Hamiltonian Picture through Discrete Legendre Transforms

- ullet Pullback the canonical 2-form: $\omega_d=(\mathbb{F}L_d^-)^*\omega_M=(\mathbb{F}L_d^+)^*\omega_M$
- Preservation properties
 - $\phi_{L_d}^* \omega_d = \omega_d \Rightarrow$ Symplectic Preservation.
 - The flow ϕ_{L_d} also preserves $J_d: M \times M \to \mathfrak{g}^*$, defined by

$$\langle J_d(q_k, q_{k+1}), \xi \rangle = \langle D_2 L_d(q_k, q_{k+1}), \xi_M(q_{k+1}) \rangle$$

where ξ_M is the fundamental vector field determined by $\xi \in \mathfrak{g} \Rightarrow$ Momentum Map Preservation.

Symplectic Hamiltonian Numerical Methods

• $H: T^*M \to \mathbb{R} \Rightarrow \text{HAMILTON EQUATIONS} \Rightarrow \phi_t: T^*M \to T^*M, \ (q(0), p(0)) \in T^*M$

$$\phi_t(q(0), p(0)) = (q(t), p(t))$$

• What if the equations are not easily solvable (or not solvable at all)? \Rightarrow NUMERICAL METHOD $\Rightarrow \phi_h : T^*M \to T^*M$, $(q_0, p_0) = (q(0), p(0)) \in T^*M$

$$\phi_h(q_0, p_0) = (q_1, p_1),$$

• $(q_1, p_1) \simeq (q(h), p(h))$. We can manage to obtain a symplectic method, i.e.

$$\omega_0 = \omega_1$$
, that is $dq_0 \wedge dp_0 = dq_1 \wedge dp_1$.

• For instance: Symplectic Euler methods

$$q_1 = q_0 + h H_p(q_0, p_1), \quad p_1 = p_0 - h H_q(q_0, p_1)$$

Hairer, Lubich, Wanner: "Geometric Numerical Integration: Structure Preserving algorithms for ODEs" (2002)

Symplectic Hamiltonian Numerical Methods

$$\phi_h: T^*M \to T^*M$$

$$((q_0,p_0),(q_1,p_1))\in T_{q_0}^*M\times T_{q_1}^*M$$

J.C. Marrero, D. Martín de Diego and A. Stern. "Symplectic groupoids and discrete constrained Lagrangian mechanics" (2011).

- Discrete Constrained Lagrangian (DCL) system can be defined (C_d, L_d) , $C_d \subset M \times M$ is a submanifold, $L_d : C_d \to \mathbb{R}$ is the discrete Lagrangian function.
 - Thus $\Sigma_{L_d} \subset (T^*(M \times M) \, , \, \omega_{M \times M})$ is a LS by Tulczyjew's Theorem.
- The proper scenario to describe Hamiltonian symplectic numerical methods is $(T^*M \times T^*M\,,\,\Omega)$, where $\Omega = pr_1^*\,\omega_M pr_0^*\,\omega_M$, and $pr_i: T^*M \times T^*M \to T^*M$

Second Question

Is there a way to relate a discrete (constrained) Lagrangian Submanifold and a general discrete symplectic Hamiltonian dynamics?

$$\Lambda \subset T^*M \times T^*M \sim \Sigma_{L_d}??$$

Symplectomorphism

$$\Upsilon: \left(T^*(M \times M), \, \omega_{M \times M}\right) \quad \to \quad \left(T^*M \times T^*M, \, \Omega\right) \\ \gamma_{(q_0, q_1)} \equiv \left(\gamma_{q_0}, \gamma_{q_1}\right) \quad \mapsto \quad \left(-\gamma_{q_0}, \gamma_{q_1}\right)$$

where $(q_0, q_1) \in M \times M$ and $\gamma_{q_i} \in T^*M$.

- We generate $\Upsilon(\Sigma_{L_d})$ LS of $T^*M \times T^*M$.
- Dynamics: $\gamma_{q_0},...,\gamma_{q_N}$ s.t. $(\gamma_{q_i},\gamma_{q_{i+1}})\in \Upsilon(\Sigma_{L_d}), 0\leq i\leq N-1$.

$$\gamma_{q_k} \in T_{q_k}^* M \cap pr_0(\Upsilon(\Sigma_{L_d})) \cap pr_1(\Upsilon(\Sigma_{L_d})), 1 \le k \le N-1.$$

D. Iglesias, J.C. Marrero, D. Martín de Diego and E. Padrón: "Discrete Dynamics in Implicit Form" (2011).

Constrained Discrete Legendre Transformations

The mappings $\mathbb{F}L_d^{\pm}: \Sigma_{L_d} \longrightarrow T^*M$ are defined by

$$\begin{array}{rcl} \mathbb{F}L_d^- & = & pr_0 \circ \Upsilon\big|_{\Sigma_{L_d}}, \\ \mathbb{F}L_d^+ & = & pr_1 \circ \Upsilon\big|_{\Sigma_{L_d}}. \end{array}$$

We'll say that (L_d, C_d) is regular if $\mathbb{F}L_d^-$ is a local diffeomorphism and hyperregular if $\mathbb{F}L_d^-$ is a global diffeomorphism.

• Generating function: if N LS $N\subset (M,\omega=d\theta)$, where θ is the Liouville 1-form. Then holds that

$$0=i_N^*\omega=d(i_N^*\theta),$$

and consequently, by Poincaré's Lemma $i_N^*\theta = dS$. S is the generating function of N.

- Consider Λ LS $\Lambda \subset T^*M \times T^*M$.
- Consider $C_d \subset M \times M$, $L_d : C_d \to \mathbb{R}$, and the LS Σ_{L_d} .
- Consider $\Upsilon^{-1}(\Lambda) \subset (T^*(M \times M), \omega_{M \times M}).$
- Assume $i_{\Upsilon^{-1}(\Lambda)}^* \theta_{M \times M} = dS$, i.e. there exists a generating function S of $\Upsilon^{-1}(\Lambda)$.
- Assume that $\pi_{M\times M}(\Upsilon^{-1}(\Lambda))=C_d$ is a submersion with connected fibers.

Theorem

Under the previous conditions the function $S: \Upsilon^{-1}(\Lambda) \to \mathbb{R}$ is $(\pi_{M \times M})\big|_{\Upsilon^{-1}(\Lambda)}$ -projectable onto a function $L_d: C_d \to \mathbb{R}$. Moreover, the following equation holds

$$\Upsilon^{-1}(\Lambda) = \Sigma_{L_d} .$$

 $\Lambda \subset T^*M \times T^*M \sim \Sigma_{L_d} \text{ YES!!}$

Example: Martinet type sub-Riemannian structure (continuous case)

$$H(q,p) = \frac{1}{2} \left(\left(p_x + p_z \frac{y^2}{2} \right)^2 + \frac{p_y^2}{(1+\beta x)^2} \right),$$

- $q = (x, y.z)^T \in \mathbb{R}^3$ and $p = (p_x, p_y, p_z) \in (\mathbb{R}^3)^* \simeq \mathbb{R}^3$.
- $\mathbb{F}H(x, y, z; p_x, p_y, p_z) = (x, y, z; (p_x + p_y \frac{y^2}{2}), \frac{p_y}{(1+\beta x)^2}, (p_x + p_z \frac{y^2}{2}) \frac{y^2}{2}) = (x, y, z; \dot{x}, \dot{y}, \dot{z})$ $C \subset T\mathbb{R}^3 = \left\{ (x, y, z; \dot{x}, \dot{y}, \dot{z}) \text{ s.t. } \dot{z} = \frac{y^2}{2} \dot{x} \right\}.$
- $\bullet L \circ \mathbb{F}H = \Delta^*H H$:

$$L(q, \dot{q}) = \frac{1}{2} \left(\dot{x}^2 + (1 + \beta x)^2 \dot{y}^2 \right).$$

• Corresponds to the sub-Riemannian structure (Δ, g) , being $\Delta = \ker \alpha$ for $\alpha = dz - \frac{y^2}{2} dx$ and $g = dx^2 + (1 + \beta x)^2 dy^2$. It is clear that $L(q, \dot{q}) = \frac{1}{2} g(\partial/\partial q, \partial/\partial q)$.

Example: Martinet type sub-Riemannian structure (discrete case)

• We apply a symplectic Euler method to the Martinet Hamiltonian

$$q_1 = q_0 + h H_p(q_0, p_1), \quad p_1 = p_0 - h H_q(q_0, p_1).$$

• We define $\Upsilon^{-1}(\Lambda)$ by means of the generating function $H^+(q_0,p_1)=q_0\,p_1+hH(q_0,p_1)$ i.e.

$$\begin{array}{rcl} x_1 & = & x_0 + h\left((p_1)_x + (p_1)_z\frac{y_0^2}{2}\right)\right),\\ \\ y_1 & = & y_0 + h\frac{(p_1)_y}{(1+\beta x_0)^2},\\ \\ z_1 & = & z_0 + h\left((p_1)_x + (p_1)_z\frac{y_0^2}{2}\right)\right)\frac{y_0^2}{2}, \end{array}$$

- which determines $C_d \subset M \times M \Rightarrow (z_1 z_0) = \frac{y_0^2}{2}(x_1 x_0)$.
- Finally, we find $S(q_0, q_1) = h\left(p_1 \frac{\partial H(q_0, p_1)}{\partial p_1} H(q_0, p_1)\right)$ which is projectable onto

$$L_d(q_0,q_1) = \frac{1}{2h} \left(\left(x_1 - x_0 \right)^2 + \frac{y_0^2}{2} \left(y_1 - y_0 \right)^2 \right) = h L \left(q_0, \frac{q_0 - q_1}{h} \right).$$

Conclusions

We have shown that given a CLS one can always find a Hamiltonian function.
 Moreover, we prove that given an arbitrary Hamiltonian system one can always construct a (possibly) CLS that generates the original system.

• We try to get some light over discrete mechanics, which can be interpreted as suitable LS of $T^*M \times T^*M$. We geometrically find when the discrete variational procedure (Σ_{L_d}) matchs a symplectic numerical method for the associated Hamiltonian system (Λ).

THANKS!!