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Introduction

“Everything is a Lagrangian Submanifold.”

Alan Weinstein.
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Introduction

Lagrangian Submanifolds are very useful!!
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R. Abraham and J.E. Marsden. “Foundations of Mechanics” (1978)

e What is a Lagrangian Submanifold (LS)?

If (M,w) is a symplectic manifold of finite dimension, N C M submanifold, iy : N — M:
e iyw=0
e dimN = ;dimM

e Examples:

@ g: M — M is a symplectomorphism, then
Graph(g) = {(x,g(x)), x e M} C (M XM, Q = pri w — prow) =
i, : Graph(g) — M x M is a LS.

o f:M—R=df(M)C (T*M, wy) is a LS. If (g, p) are local coord. for T*M, by
Darboux Theorem wy = dq A dp.

o (T'M, wu), H: T*M — R, ix,wm = dH = Xu(T*M) C (TT*M , drww) is a LS.
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Tulczyjew Triple

o Tulczyjew Triple (1976):

(T*TM wTM TTM dTwM T*TM wT*M)

\M/

@ By =buwpuys  Bupsy (V) = hwrm, wherev € TT*M =

BM(qi7pi7 qivpi) = (qi7pi7 _pi7 ql)

o (am(z), w) = (z, ku(w)), where z € TT*M and w € TTM,

aM(qi7Pi7 qi7pi) = (qi7 qi7pi7pi)'
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Intrinsic description of Lag. and Ham. Mechanics

o L:TM — R, then dL(TM) C T*TM is a LS. Moreover, given that ay is a
symplectomorphism, a,,' (dL(TM)) C TT*M is a LS.
a1
M
=
dL(TM) C T*TM <~ a;,'(dL(TM)) C TT*M

™ — R
dL L

e The solutions of the dynamics of a,,"' (dL(TM)) are curves v : I C R — T*M s.t.
dd—j :1 C R — TT"M verifies %(U C oy’ (dL(TM)). Locally

4oy o
dt \ 9q oq
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First Question

Is there a way to describe constrained Lagrangian Mechanics through
Lagrangian Submanifolds and, moreover, to relate that dynamics with a
Hamiltonian system?
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Lagrangian Mechanics with Constraints

e Constrained Lagrangian System (CLS): C C TM and a Lag. functionL : C — R.
Locally C is described by a set of constraints ¢ : TM — R.

Theorem (Tulczyjew)

Let M be a smooth manifold, N C M a submanifold, and f: N — R a smooth function.
Then

S ={p e T"M | nu(p) € Nand (p,v) = (df,v)
for allv € TN C TM such that 7w (v) = mu(p) }

is a Lagrangian submanifold of T*M.

o Hence, ‘ ¥ € (T"TM , wrm) ‘is a LS. Moreover, | oy, (31) C (TT*M, drwu) ‘also is,
which means DYNAMICS!. Locally I = L 4+ Ao ¢* : TM — R,

dt \ ogt oqt oqt aqt
¢%(¢hq) = 0
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From Constrained Lagrangian Mechanics to Hamiltonian Mechanics

Constrained Legendre Transformation

FL : ¥, — T*M as the mapping FL = 71y 0 (ay; )]s, -

We will say that (L, C) is regular if FL is a local diffeomorphism and hyperregular if FL is
a global diffeomorphism.

@ E: ¥ — R, Er(aw) = (ay, ul)) — L(u), where ay € ¥y, u € Cand ul, € TC C TTM.

@ Define w; = (FL)*wy on ¥; = .

e If (L, C) is hyperrregular, we can define a Hamiltonian function H : T*"M — R by
H=EFE;o(FL)™*

such that ix,wy = dH.

YL = XH(T*M)
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From Constrained Lagrangian Mechanics to Hamiltonian Mechanics

Constrained Legendre Transformation

FL : ¥, — T*M as the mapping FL = 71y 0 (ay; )]s, -

We will say that (L, C) is regular if FL is a local diffeomorphism and hyperregular if FL is
a global diffeomorphism.

@ E: ¥ — R, Er(aw) = (ay, ul)) — L(u), where ay € ¥y, u € Cand ul, € TC C TTM.

@ Define w; = (FL)*wy on ¥ = .

o If (L, C) is hyperrregular, we can define a Hamiltonian function H : T*"M — R by
H=EFE;o(FL)™*

such that ix,wy = dH.
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From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

o H:T*M — R. Since my : T*"M — M is a vector bundle, define the dilation vector field
A* € X(T*M):

Afag)f = 3| flag), AT =p 2

a Tdt t=0 an = b 6Pi.

o Define the fiber derivative FH : T*M — TM

OH
ap,-

d i i
(FH(aq), f) = | _ Hlag+1t8y), FH(d'\p) = (d', 5)-

e Assume IFH(T*M) = C is a submanifold C TM =- Mimicking the Gotay and Nester’s
definition, we set L : C — IR such that

LoFH = A"H — H.

o FH (o) = FH(,) or equivalently (A*H — H)(oyq) = (A™H — H)(,). Extra assumption

A Hamiltonian H : T*"M — R is almost-regular if FH(T*M) = C is a submanifold of TM
and FH : T*M — C C TM is a submersion with connected fibers.
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From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

e Under this assumption we can consider the infinitesimal condition, i.e.
L7(A"H—H) =0, V Z ¢ ker(FFH.).
o This is the case, hence L is well defined.

Theorem

The following equivalence holds

oM (XH(T*M)) = EL

Sketch of the Poof
For any W; € Xy (T*M)

| A

<OtM(W1)7 U> = <d.L, U) YU € TC.
This is equivalent to prove

<CMM(W1)7 FH*(W2)> = <dL, FH*(W2)> YW, € TT*M.

FH* ap(W1) = FH* dL = d(A*H — H).
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From Hamiltonian Mechanics to Constrained Lagrangian Mechanics

TT*M D Xu(T*M) — % ap (X (T*M)) = S, > T*TM

o a

"M ccT™
Hi lL
R R
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Discrete Equivalence

ANY DISCRETE EQUIVALENCE?
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Brief Introduction to Discrete Mechanics

J.E. Marsden and M. West: “Discrete Mechanics and Variational Integrators” (2001)

e M is a n-dimensinal smooth manifold (¢q'), and TM its tangent bundle (¢’, ¢').

L:TM — R: d/9 5
L\ L .
— =)= <i<n.
dt (an> og ~ O Tsisn

e Discrete Mechanics: TM = M x M. Moreover Lg : M x M — R:

h
La(qo,q1) ~ / L(g().4(0)) dt

e Define the sequences (qo, ..., qv) € M" " and the action sum Sq = 33—, La(qx—1, qx)-

D1L4(qk, Qk+1) + D2La(qk—1,9x) = O.

This equations define a discrete flow ¢r, : M x M — M x M, ¢r,(qk—1,qx) = (qx, Gk+1)>
under regularity assumptions.
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Brief Introduction to Discrete Mechanics

e Go into a Hamiltonian Picture through Discrete Legendre Transforms

FLy:MxM — T'M

(qo,q1) +— (g0, —D1L4(q0,q1))
FL7:MxM — T*M
(90,91) +— (q1,D2L4(qo,q1)) »

o Pullback the canonical 2-form: wy = (FL; )*wy = (FL})*wn

e Preservation properties
° (j)fd wg = wg = Symplectic Preservation.
@ The flow ¢y, also preserves J; : M x M — g*, defined by
(a(qk; ar+1)5§) = (D2La(@r: Gr+1), Em(q+1))

where £y is the fundamental vector field determined by ¢ € g = Momentum Map
Preservation.
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Symplectic Hamiltonian Numerical Methods

e H:T*M — R = HAMILTON EQUATIONS = ¢, : T*M — T*M, (¢(0),p(0)) € T*M

¢:(q(0),p(0)) = (q(t), p(t))

e What if the equations are not easily solvable (or not solvable at all)? = NUMERICAL
METHOD = ¢y, : T*"M — T*M, (qo,po) = (q(0),p(0)) € T*"M

¢n(qo, Po) = (q1,p1),
e (q1,p1) ~ (q(h),p(h)). We can manage to obtain a symplectic method, i.e.
wo = W1, that is dqo N dpo = dql A\ dp1‘
e For instance: Symplectic Euler methods

q1 = qo +hHp(qo,p1), p1=po—hHy(qo,p1)

Hairer, Lubich, Wanner: “Geometric Numerical Integration: Structure Preserving
algorithms for ODEs” (2002)
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Symplectic Hamiltonian Numerical Methods

én:T*M — T*M

((gosPo); (q1,p1)) € Ty;M x Ty M
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Discrete Equivalence

J.C. Marrero, D. Martin de Diego and A. Stern. “Symplectic groupoids and discrete
constrained Lagrangian mechanics” (2011).

e Discrete Constrained Lagrangian (DCL) system can be defined (C4,Lq), C4 C M x M is
a submanifold, Ly : C4 — R is the discrete Lagrangian function.

@ Thus X, C (T*(M x M), wmxn) is a LS by Tulczyjew’s Theorem.

e The proper scenario to describe Hamiltonian symplectic numerical methods is
(T*"M x T*M, ), where Q = pri wv — prg wwm, and pri : T"M X T*M — T*M
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Discrete Equivalence

Second Question

Is there a way to relate a discrete (constrained) Lagrangian Submanifold and a
general discrete symplectic Hamiltonian dynamics?

ACTMXTM ~ %,??
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Discrete Equivalence

e Symplectomorphism

T*M x T*M, Q)

YT:(T"MxM), wuxu) — (
= (=Ya05 Yar)

Yigoa) = (Vaos Yar)
where (qo,q1) € M x M and v, € T*M.

o We generate Y'(X,) LS of T"M x T*M.

e Dynamics: gy, -+, Yoy S-t- (Vg Y1) € T (X1y), 0 <i <N -1

Yo € TgM Npro(Y(XL,)) Npri(Y (X)), 1 <k<N-1

D. Iglesias, J.C. Marrero, D. Martin de Diego and E. Padrén: “Discrete Dynamics in
Implicit Form” (2011).
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Discrete Equivalence

Constrained Discrete Legendre Transformations

The mappings ]E‘LjE : X1, — T*M are defined by

]FLd_ = pl"QOY|2L B
d

FLS prioTly .
d

We'll say that (Lg, Cq) is regular if IFL; is a local diffeomorphism and hyperregular if
FL; is a global diffeomorphism.

e Generating function: if N LS N C (M,w = df), where 0 is the Liouville 1-form. Then
holds that

0 = ifw = d(i50),

and consequently, by Poincaré’s Lemma iy6 = dS. S is the generating function of N.
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Discrete Equivalence

Consider ALSA C T"M x T*M.

Consider C4 C M x M, Ly : C4 — R, and the LS ¥,.

Consider T™(A) C (T*(M x M), wuxm)-

Assume i},l( A)GMxM =dS, i.e. there exists a generating function S of T’l(A).

Assume that myxu(T ' (A)) = Cy is a submersion with connected fibers.

Under the previous conditions the function § : T=*(A) — R is
(mmrscmr) |T71 ( A)-projectable onto a function Ly : C; — R. Moreover, the following

equation holds

T'A) =%, .

ACT'M xT*M ~ X, YES!!
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Example: Martinet type sub-Riemannian structure (continuous case)

Hiao)— 7\ P}
(‘LP)—E <px+Pz§> +m )

*q=(xy2)" € R®andp = (px,py,p:) € (R®)* =~ R.

o

2 . . .
hd FH(x7y7Z§pX7pJ/7pZ) = (X,y,Z; (Px +Pyy72)a (1_,_13#)27 (px +p2y7) _)’7) = (XJ”ZQXJGZ)

2
CCTR? = {(x,y,z; X,7,%) st. z:%x}

elLolFH = A*"H — H:

(xz +(1+ ﬁx)zyz) .

N

L(g,q) =

e Corresponds to the sub-Riemannian structure (A, g), being A = ker « for
a=dz— y;dx and g = dx® + (1 4 Bx)*dy?. It is clear that L(q, q) = 3 g(0/0q,0/9q).

Fernando Jiménez (ICMAT-CSIC) RPCCT Meeting San Diego, 2011 24 /27



Example: Martinet type sub-Riemannian structure (discrete case)

e We apply a symplectic Euler method to the Martinet Hamiltonian

q1 = qo +hHp(qo,p1), p1 = po—hHg(qo,p1).

o We define T~'(A) by means of the generating function H* (qo,p1) = qop1 + hH(qo,p1)

ie.
yZ
N o= xo+h<<p1>x+(p1>z;°>>,
(Pl)y
= h—"
hg Yo + REWESE

21

2 2
Y Yi
Zo+h<(P1)x+(P1)z;0)> ;",
v

o which determines Cs C M x M = (21 — 20) = 3 (X1 — Xo).

e Finally, we find S(qo,q1) =h (p1 % - H(q07p1)) which is projectable onto

1 ¥ 90—
Lg(q0,q1) = o ((Xl —x0)® + ;00/1 *}’0)2> =hlL (qo, T) .
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Conclusions

@ We have shown that given a CLS one can always find a Hamiltonian function.
Moreover, we prove that given an arbitrary Hamiltonian system one can always
construct a (possibly) CLS that generates the original system.

@ We try to get some light over discrete mechanics, which can be interpreted as
suitable LS of T*"M x T*M. We geometrically find when the discrete variational
procedure (X;,) matchs a symplectic numerical method for the associated
Hamiltonian system (A).
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