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Part I:

Free Probability and Non-Crossing

Partitions



Some History

1985 Voiculescu introduces ”freeness” in the context of isomor-
phism problem of free group factors

1991 Voiculescu discovers relation with random matrices (which
leads, among others, to deep results on free group factors)

1994 Speicher develops combinatorial theory of freeness, based on
”free cumulants”

later ... many new results on operator algebras, eigenvalue distri-
bution of random matrices, and much more ....



Definition of Freeness

Let (A, ϕ) be non-commutative probability space, i.e., A is
a unital algebra and ϕ : A → C is unital linear functional (i.e.,
ϕ(1) = 1)

Unital subalgebras Ai (i ∈ I) are free or freely independent, if
ϕ(a1 · · · an) = 0 whenever

• ai ∈ Aj(i), j(i) ∈ I ∀i, j(1) 6= j(2) 6= · · · 6= j(n)

• ϕ(ai) = 0 ∀i

Random variables x1, . . . , xn ∈ A are free, if their generated unital
subalgebras Ai := algebra(1, xi) are so.



What is Freeness?

Freeness between A and B is an infinite set of equations relating

various moments in A and B:

ϕ

(
p1(A)q1(B)p2(A)q2(B) · · ·

)
= 0

Basic observation: freeness between A and B is actually a rule

for calculating mixed moments in A and B from the moments

of A and the moments of B:

ϕ

(
An1Bm1An2Bm2 · · ·

)
= polynomial

(
ϕ(Ai), ϕ(Bj)

)



Example:

ϕ

((
An − ϕ(An)1

)(
Bm − ϕ(Bm)1

))
= 0,

thus

ϕ(AnBm)− ϕ(An · 1)ϕ(Bm)− ϕ(An)ϕ(1 ·Bm) + ϕ(An)ϕ(Bm)ϕ(1 · 1) = 0,

and hence

ϕ(AnBm) = ϕ(An) · ϕ(Bm)
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Freeness is a rule for calculating mixed moments, analogous

to the concept of independence for random variables.

Thus freeness is also called free independence



Freeness is a rule for calculating mixed moments, analogous
to the concept of independence for random variables.

Note: free independence is a different rule from classical indepen-
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Where Does Freeness Show Up?

• generators of the free group in the corresponding free group

von Neumann algebras L(Fn)

• creation and annihilation operators on full Fock spaces

• for many classes of random matrices



Understanding the Freeness Rule:

the Idea of Cumulants

• write moments in terms of other quantities, which we call

free cumulants

• freeness is much easier to describe on the level of free cu-

mulants: vanishing of mixed cumulants

• relation between moments and cumulants is given by sum-

ming over non-crossing or planar partitions



Non-Crossing Partitions

A partition of {1, . . . , n} is a decomposition π = {V1, . . . , Vr} with

Vi 6= ∅, Vi ∩ Vj = ∅ (i 6= y),
⋃
i

Vi = {1, . . . , n}

The Vi are the blocks of π ∈ P(n).

π is non-crossing if we do not have

p1 < q1 < p2 < q2

such that p1, p2 are in same block, q1, q2 are in same block, but
those two blocks are different.

NC(n) := {non-crossing partitions of {1,. . . ,n}}

NC(n) is actually a lattice with refinement order.



Moments and Cumulants

For unital linear functional

ϕ : A → C

we define cumulant functionals κn (for all n ≥ 1)

κn : An → C

as multi-linear functionals by moment-cumulant relation

ϕ(A1 · · ·An) =
∑

π∈NC(n)

κπ[A1, . . . , An]

Note: classical cumulants are defined by a similar formula, where

only NC(n) is replaced by P(n)



A1

ϕ(A1) =κ1(A1)

A1A2

ϕ(A1A2) = κ2(A1, A2)

+ κ1(A1)κ1(A2)

thus

κ2(A1, A2) = ϕ(A1A2)− ϕ(A1)ϕ(A2)



A1A2A3

ϕ(A1A2A3) = κ3(A1, A2, A3)

+ κ1(A1)κ2(A2, A3)

+ κ2(A1, A2)κ1(A3)

+ κ2(A1, A3)κ1(A2)

+ κ1(A1)κ1(A2)κ1(A3)



ϕ(A1A2A3A4) = + + + +

+ + + + +

+ + + +

= κ4(A1, A2, A3, A4) + κ1(A1)κ3(A2, A3, A4)

+ κ1(A2)κ3(A1, A3, A4) + κ1(A3)κ3(A1, A2, A4)

+ κ3(A1, A2, A3)κ1(A4) + κ2(A1, A2)κ2(A3, A4)

+ κ2(A1, A4)κ2(A2, A3) + κ1(A1)κ1(A2)κ2(A3, A4)

+ κ1(A1)κ2(A2, A3)κ1(A4) + κ2(A1, A2)κ1(A3)κ1(A4)

+ κ1(A1)κ2(A2, A4)κ1(A3) + κ2(A1, A4)κ1(A2)κ1(A3)

+ κ2(A1, A3)κ1(A2)κ1(A4) + κ1(A1)κ1(A2)κ1(A3)κ1(A4)



Freeness =̂ Vanishing of Mixed Cumulants

Theorem [Speicher 1994]: The fact that A and B are free is

equivalent to the fact that

κn(C1, . . . , Cn) = 0

whenever

• n ≥ 2

• Ci ∈ {A,B} for all i

• there are i, j such that Ci = A, Cj = B



Freeness =̂ Vanishing of Mixed Cumulants

free product =̂ direct sum of cumulants

ϕ(An) given by sum over blue planar diagrams

ϕ(Bm) given by sum over red planar diagrams

then: for A and B free, ϕ(An1Bm1An2 · · · ) is given by sum over

planar diagrams with monochromatic (blue or red) blocks



Vanishing of Mixed Cumulants

ϕ(ABAB) =

κ1(A)κ1(A)κ2(B,B)+κ2(A,A)κ1(B)κ1(B)+κ1(A)κ1(B)κ1(A)κ1(B)

ABAB ABAB ABAB



Factorization of Non-Crossing Moments

The iteration of the rule

ϕ(A1BA2) = ϕ(A1A2)ϕ(B) if {A1, A2} and B free

leads to the factorization of all ”non-crossing” moments in free
variables

x1 x2 x3 x3 x2 x4 x5 x5 x2x1

ϕ(x1x2x3x3x2x4x5x5x2x1)

= ϕ(x1x1) · ϕ(x2x2x2) · ϕ(x3x3) · ϕ(x4) · ϕ(x5x5)



Sum of Free Variables

Consider A, B free.

Then, by freeness, the moments of A+B are uniquely determined

by the moments of A and the moments of B.

Notation: We say the distribution of A+B is the

free convolution

of the distribution of A and the distribution of B,

µA+B = µA � µB.



Sum of Free Variables

In principle, freeness determines this, but the concrete nature of
this rule on the level of moments is not apriori clear.

Example:

ϕ
(
(A+B)1

)
= ϕ(A) + ϕ(B)

ϕ
(
(A+B)2

)
= ϕ(A2) + 2ϕ(A)ϕ(B) + ϕ(B2)

ϕ
(
(A+B)3

)
= ϕ(A3) + 3ϕ(A2)ϕ(B) + 3ϕ(A)ϕ(B2) + ϕ(B3)

ϕ
(
(A+B)4

)
= ϕ(A4) + 4ϕ(A3)ϕ(B) + 4ϕ(A2)ϕ(B2)

+ 2
(
ϕ(A2)ϕ(B)ϕ(B) + ϕ(A)ϕ(A)ϕ(B2)

− ϕ(A)ϕ(B)ϕ(A)ϕ(B)
)

+ 4ϕ(A)ϕ(B3) + ϕ(B4)



Sum of Free Variables

Corresponding rule on level of free cumulants is easy: If A and

B are free then

κn(A+B,A+B, . . . , A+B) =κn(A,A, . . . , A) + κn(B,B, . . . , B)

+κn(. . . , A,B, . . . ) + · · ·
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Relation between Moments and Free Cumulants

We have

mn := ϕ(An) moments

and

κn := κn(A,A, . . . , A) free cumulants

Combinatorially, the relation between them is given by

mn = ϕ(An) =
∑

π∈NC(n)

κπ

Example:

m1 = κ1, m2 = κ2 + κ2
1, m3 = κ3 + 3κ2κ1 + κ3

1



m3 = κ + κ + κ + κ + κ = κ3 + 3κ2κ1 + κ3
1

Theorem [Speicher 1994]: Consider formal power series

M(z) = 1 +
∞∑
k=1

mnz
n, C(z) = 1 +

∞∑
k=1

κnz
n

Then the relation

mn =
∑

π∈NC(n)

κπ

between the coefficients is equivalent to the relation

M(z) = C[zM(z)]



Proof

First we get the following recursive relation between cumulants

and moments

mn =
∑

π∈NC(n)

κπ

=
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

∑
π1∈NC(i1)

· · ·
∑

πs∈NC(is)

κsκπ1 · · ·κπs

=
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis



mn =
n∑

s=1

∑
i1,...,is≥0

i1+···+is+s=n

κsmi1 · · ·mis

Plugging this into the formal power series M(z) gives

M(z) = 1 +
∑
n
mnz

n

= 1 +
∑
n

n∑
s=1

∑
i1,...,is≥0

i1+···+is+s=n

ksz
smi1z

i1 · · ·misz
is

= 1 +
∞∑
s=1

κsz
s
(
M(z)

)s
= C[zM(z)] �



Remark on Classical Cumulants

Classical cumulants ck are combinatorially defined by

mn =
∑

π∈P(n)

cπ

In terms of generating power series

M̃(z) = 1 +
∞∑
n=1

mn

n!
zn, C̃(z) =

∞∑
n=1

cn

n!
zn

this is equivalent to

C̃(z) = log M̃(z)



From Moment Series to Cauchy Transform

Instead of M(z) we consider Cauchy transform

G(z) := ϕ(
1

z −A
) =

∫ 1

z − t
dµA(t) =

∑ ϕ(An)

zn+1
=

1

z
M(1/z)

and instead of C(z) we consider R-transform

R(z) :=
∑
n≥0

κn+1z
n =

C(z)− 1

z

Then M(z) = C[zM(z)] becomes

R[G(z)] +
1

G(z)
= z or G[R(z) + 1/z] = z



Sum of Free Variables

Consider a random variable A ∈ A and define its
Cauchy transform G and its R-transform R by

G(z) =
1

z
+
∞∑
n=1

ϕ(An)

zn+1
, R(z) =

∞∑
n=1

κn(A, . . . , A)zn−1

Theorem [Voiculescu 1986, Speicher 1994]: Then we have

• 1
G(z) +R(G(z)) = z

• RA+B(z) = RA(z) +RB(z) if A and B are free



What is Advantage of G(z) over M(z)?

For any probability measure µ, its Cauchy transform

G(z) :=
∫ 1

z − t
dµ(t)

is an analytic function G : C+ → C− and we can recover µ from

G by Stieltjes inversion formula

dµ(t) = −
1

π
lim
ε→0
=G(t+ iε)dt



Calculation of Free Convolution

The relation between Cauchy transform and R-transform, and
the Stieltjes inversion formula give an effective algorithm for
calculating free convolutions; and thus also, e.g., the asymptotic
eigenvalue distribution of sums of random matrices in generic
position:

A  GA  RA

↓

RA +RB = RA+B  GA+B  A+B

↑
B  GB  RB



What is the Free Binomial
(

1
2δ−1 + 1

2δ+1
)�2

µ :=
1

2
δ−1 +

1

2
δ+1, ν := µ � µ

Then Gµ(z) =
∫ 1

z − t
dµ(t) =

1

2

( 1

z + 1
+

1

z − 1

)
=

z

z2 − 1

and so z = Gµ[Rµ(z) + 1/z] =
Rµ(z) + 1/z

(Rµ(z) + 1/z)2 − 1

thus Rµ(z) =

√
1 + 4z2 − 1

2z

and so Rν(z) = 2Rµ(z) =

√
1 + 4z2 − 1

z



Rν(z) =

√
1 + 4z2 − 1

z
gives Gν(z) =

1√
z2 − 4

and thus

dν(t) = −
1

π
=

1√
t2 − 4

dt =


1

π
√

4−t2
, |t| ≤ 2

0, otherwise

So (1

2
δ−1 +

1

2
δ+1

)�2
= ν = arcsine-distribution
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2
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)

2800 eigenvalues of A + UBU∗, where A and B are diagonal
matrices with 1400 eigenvalues +1 and 1400 eigenvalues -1,
and U is a randomly chosen unitary matrix



Some Literature on Free Probability
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Part II:

Free Brownian Motion and Free

Stochastic Analysis



What is the free analogue of the normal

distribution?

The free anlogue of the normal distribution is what we get as

limit in a free central limit theorem: Let x1, x2, . . . be free and

identically distributed with ϕ(xi) = 0 and ϕ(x2
i ) = 1.

To what does
x1 + · · ·+ xm√

m

converge for m→∞?

Denote the limit by s.



We have

κn(s, . . . , s) = lim
m→∞κn(

x1 + · · ·+ xm√
m

, . . . ,
x1 + · · ·+ xm√

m
)

= lim
m→∞

1

mn/2

m∑
i(1),...,i(n)=1

κn(xi(1), . . . , xi(n))

= lim
m→∞

1

mn/2

m∑
i=1

κn(xi, . . . , xi)

= lim
m→∞m

n/2−1κn(x1, . . . , x1)

=

0, n 6= 2

1, n = 2



µs has cumulants

κn =

0, n 6= 2

1, n = 2

thus

R(z) =
∑
n≥0

κn+1z
n = κ2 · z = z

and hence

z = R[G(z)] +
1

G(z)
= G(z) +

1

G(z)

or G(z)2 + 1 = zG(z)



G(z)2 + 1 = zG(z) thus G(z) =
z ±

√
z2 − 4

2

We have ”-”, because G(z) ∼ 1/z for z →∞; then

dµs(t) = −
1

π
=
(t−√t2 − 4

2

)
dt

=


1

2π

√
4− t2dt, if t ∈ [−2,2]

0, otherwise

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.05
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s has a semicircular distribution.



Wigner’s semicircle law

Consider selfadjoint Gaussian N ×N random matrix.

2.5 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5
0
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0.1

0.15

0.2

0.25

0.3

0.35

... one realization ... N=4000



A free Brownian motion is given by a family
(
S(t)

)
t≥0
⊂ (A, ϕ)

of random variables (A von Neumann algebra, ϕ faithful trace),
such that

• S(0) = 0

• each increment S(t)− S(s) (s < t) is semicircular with mean
= 0 and variance = t− s, i.e.,

dµS(t)−S(s)(x) =
1

2π(t− s)

√
4(t− s)− x2dx

• disjoint increments are free: for 0 < t1 < t2 < · · · < tn,

S(t1), S(t2)− S(t1), . . . , S(tn)− S(tn−1) are free



A free Brownian motion is given

• abstractly, by a family
(
S(t)

)
t≥0

of random variables with

– S(0) = 0

– each S(t)− S(s) (s < t) is (0, t− s)-semicircular

– disjoint increments are free

• concretely, by the sum of creation and annihilation operators
on the full Fock space

• asymptotically, as the limit of matrix-valued (Dyson) Brow-
nian motions



Free Brownian motions as matrix limits

Let (XN(t))t≥0 be a symmetric N × N-matrix-valued Brownian
motion, i.e.,

XN(t) =

B11(t) . . . B1N(t)
... . . . ...

BN1(t) . . . BNN(t)

 , where

• Bij are, for i ≥ j, independent classical Brownian motions

• Bij(t) = Bji(t).

Then,
(
XN(t)

)
t≥0

distr−→
(
S(t)

)
t≥0, in the sense that almost surely

lim
N→∞

tr
(
XN(t1) · · ·XN(tn)

)
= ϕ

(
S(t1) · · ·S(tn)

)
∀0 ≤ t1, t2, . . . , tn



Intermezzo on realisations on Fock spaces

Classical Brownian motion can be realized quite canonically by

operators on the symmetric Fock space.

Similarly, free Brownian motion can be realized quite canonically

by operators on the full Fock space



First: symmetric Fock space ...

For real Hilbert space HR put H := HR + iHR and

Fs(H) :=
∞⊕
n≥0

H⊗symn, where H⊗0 = CΩ

with inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉sym = δnm
∑
π∈Sn

n∏
i=1

〈fi, gπ(i)〉.

Define creation and annihilation operators (for f ∈ H)

a∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn

a(f)f1 ⊗ · · · ⊗ fn =
n∑
i=1

〈f, fi〉f1 ⊗ · · · ⊗ f̌i ⊗ · · · ⊗ fn

a(f)Ω = 0



... and classical Brownian motion

Put ϕ(·) := 〈Ω, ·Ω〉, x(f) := a(f) + a∗(f)

then (x(f))f∈HR is Gaussian family with covariance

ϕ
(
x(f)x(g)

)
= 〈f, g〉.

In particular, choose H := L2(R+), ft := 1[0,t), then

Bt := x(ft) = a(1[0,t)) + a∗(1[0,t))

is classical Brownian motion Wt, meaning

ϕ(Bt1 · · ·Btn) = E[Wt1 · · ·Wtn] ∀0 ≤ t1, . . . , tn



Now: full Fock space ...

For real Hilbert space HR put H := HR + iHR and

F(H) :=
∞⊕
n≥0

H⊗n, where H⊗0 = CΩ

with usual inner product

〈f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gm〉 = δnm〈f1, g1〉 · · · 〈fn, gn〉.

Define creation and annihilation operators (for f ∈ H)

b∗(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn
b(f)f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn

b(f)Ω = 0



... and free Brownian motion

Put ϕ(·) := 〈Ω, ·Ω〉, x(f) := b(f) + b∗(f)

then (x(f))f∈HR is semicircular family with covariance

ϕ
(
x(f)x(g)

)
= 〈f, g〉.

In particular, choose H := L2(R+), ft := 1[0,t), then

St := x(ft) = b(1[0,t)) + b∗(1[0,t)) is free Brownian motion.



Semicircle as real part of one-sided shift

Consider case of one-dimensional H = Cv. Then this reduces to

orthonormal basis for F(H): Ω = e0, e1, e2, e3, . . .

and one-sided shift l = b∗(v)

len = en+1, l∗en =

en−1, n ≥ 1

0, n = 0

One-sided shift is canonical non-unitary isometry

l∗l = 1, ll∗ 6= 1 (= 1− projection on Ω)

With ϕ(a) := 〈Ω, aΩ〉 we claim: distribution of l+ l∗ is semicircle.



Moments of l + l∗

In the calculation of 〈Ω, (l + l∗)nΩ〉 only such products in cre-

ation and annihilation contribute, where we never annihilate the

vacuum, and where we start and end at the vacuum. So odd

moments are zero.

Examples

ϕ
(
(l + l∗)2

)
: l∗l

ϕ
(
(l + l∗)4

)
: l∗l∗ll, l∗ll∗l

ϕ
(
(l + l∗)6

)
: l∗l∗l∗lll, l∗ll∗l∗ll, l∗ll∗ll∗l, l∗l∗ll∗ll, l∗l∗lll∗l

Those contributing terms are in clear bijection with non-crossing

pairings (or with Dyck paths).



(l∗, l∗, l∗, l, l, l) ���
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���@@R

@@R
@@R

(l∗, l∗, l, l∗, l, l) ���
���@@R���@@R

@@R

(l∗, l, l∗, l∗, l, l) ���
���@@R

@@R���@@R

(l∗, l∗, l, l, l∗, l) ���@@R���
���@@R

@@R
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Some History on Free Stochastic Analysis

1992 stochastic integration by Kümmerer and Speicher with re-
spect to creation and annihilation operators on full Fock
space (in analogy with theory of Hudson/Pathasarathy on
symmetric Fock space)

1998 improved theory of stochastic integration (and free Malliavin
calculus) for free Brownian motion by Biane and Speicher

2012 free version of the fourth moment theorem by Kemp, Nour-
din, Peccati, Speicher

2013 rough-paths approach to non-commutative stochastic calcu-
lus, in particular to free stochastic calculus, by Deya and
Schott



Stochastic Analysis on ”Wigner” space

Starting from a free Brownian motion
(
S(t)

)
t≥0

we define mul-

tiple “Wigner” integrals

I(f) =
∫
· · ·

∫
f(t1, . . . , tn)dS(t1) . . . dS(tn)

for scalar-valued functions f ∈ L2(Rn+), by avoiding the diagonals,

i.e. we understand this as

I(f) =
∫
· · ·

∫
all ti distinct

f(t1, . . . , tn)dS(t1) . . . dS(tn)



Definition of Wigner integrals

More precisely: for f of form

f = 1[s1,t1]×···×[sn,tn]

for pairwisely disjoint intervals [s1, t1], . . . , [sn, tn] we put

I(f) := (St1 − Ss1) · · · (Stn − Ssn)

Extend I(·) linearly over set of all off-diagonal step functions

(which is dense in L2(Rn+). Then observe Ito-isometry

ϕ[I(g)∗I(f)] = 〈f, g〉L2(Rn+)

and extend I to closure of off-diagonal step functions, i.e., to

L2(Rn+).



Note: free stochastic integrals are usually
bounded operators

Free Haagerup Inequality [Bozejko 1991; Biane, Speicher
1998]:

∥∥∥∫ · · · ∫ f(t1, . . . , tn)dS(t1) . . . dS(tn)
∥∥∥ ≤ (n+ 1)‖f‖L2(Rn+)



Intermezzo: combinatorics and norms

Consider free semicirculars s1, s2, . . . of variance 1. Since

(s1 + · · ·+ sn)/
√
n is again a semicircular element of variance 1

(and thus of norm 2), we have∥∥∥∥∥∥∥
1

nk/2

n∑
i(1),...,i(k)=1

si(1) · · · si(k)

∥∥∥∥∥∥∥ =

∥∥∥∥∥∥
(
s1 + · · ·+ cn√

n

)k∥∥∥∥∥∥ = 2k

The free Haagerup inequality says that this is drastically reduced

if we subtract the diagonals, i.e.,

lim
n→∞

∥∥∥∥∥∥∥∥∥
1

nk/2

n∑
i(1),...,i(k)=1

all i(.) different

si(1) · · · si(k)

∥∥∥∥∥∥∥∥∥ = k + 1



Intermezzo: combinatorics and norms

Note: one can calculate norms from asymptotic knowledge of
moments!

If x is selfadjoint and ϕ faithful (as our ϕ for the free Brownian
motion is) then one has

‖x‖ = lim
p→∞ ‖x‖p = lim

p→∞
p
√
ϕ(|x|p) = lim

m→∞
2m
√
ϕ(x2m)

So, if s is a semicircular element, then

ϕ(s2m) = cm =
1

1 +m

(2m
m

)
∼ 4m,

thus

‖s‖ = lim
m→∞

2m
√
cm ∼ 2m√4m = 2



Exercise: combinatorics and norms

Consider free semicirculars s1, s2, . . . of variance 1. Prove by

considering moments that∥∥∥∥∥∥1

n

n∑
i,j=1

sisj

∥∥∥∥∥∥ = 4, lim
n→∞

∥∥∥∥∥∥1

n

n∑
i,j=1,i 6=j

sisj

∥∥∥∥∥∥ = 3

Realize that the involved NC pairings are in bijection with NC

partitions and NC partitions without singletons, respectively.



2000 eigenvalues of the matrix

1

50

50∑
i,j=1

XiXj,
1

50

50∑
i,j=1,i 6=j

XiXj,
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1
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0
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0.3

0.4
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0.6

0.7

0.8

0.9

for X1, . . . , X50 independent 2000× 2000 GUE.



Multiplication of Multiple Wigner Integrals

The Ito formula shows up in multiplicaton of two multiple Wigner

integrals

∫
f(t1)dS(t1) ·

∫
g(t2)dS(t2)

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t) dS(t)dS(t)︸ ︷︷ ︸

dt

=
∫∫

f(t1)g(t2)dS(t1)dS(t2) +
∫
f(t)g(t)dt
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∫
f(t1)dS(t1) ·

∫
g(t2)dS(t2)

=
∫∫
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f(t)g(t)dt



Multiplication of Multiple Wigner Integrals

∫∫
f(t1, t2)dS(t1)dS(t2) ·

∫
g(t3)dS(t3)

=
∫∫∫

f(t1, t2)g(t3)dS(t1)dS(t2)dS(t3)

+
∫∫

f(t1, t)g(t)dS(t1) dS(t)dS(t)︸ ︷︷ ︸
dt

+
∫∫

f(t, t2)g(t) dS(t)dS(t2)dS(t)︸ ︷︷ ︸
dtϕ[dS(t2)]=0



Multiplication of Multiple Wigner Integrals

∫∫
f(t1, t2)dS(t1)dS(t2) ·

∫
g(t3)dS(t3)

=
∫∫∫

f(t1, t2)g(t3)dS(t1)dS(t2)dS(t3)

+
∫∫

f(t1, t)g(t)dS(t1) dS(t)dS(t)︸ ︷︷ ︸
dt

+
∫∫

f(t, t2)g(t) dS(t)dS(t2)dS(t)︸ ︷︷ ︸
dtϕ[dS(t2)]=0



Multiplication of Multiple Wigner Integrals

Free Ito Formula [Biane, Speicher 1998]:

dS(t)AdS(t) = ϕ(A)dt for A adapted



Multiplication of Multiple Wigner Integrals

Consider f ∈ L2(Rn+), g ∈ L2(Rm+)

For 0 ≤ p ≤ min(n,m), define

f
p
_ g ∈ L2(Rn+m−2p

+ )

by

f
p
_ g(t1, . . . , tm+n−2p)

=
∫
f(t1, . . . , tn−p, s1, . . . , sp)g(sp, . . . , s1, tn−p+1, . . . , tn+m−2p)ds1 · · · dsp

Then we have

I(f) · I(g) =
min(n,m)∑
p=0

I(f
p
_ g)



Example: f ∈ L2(R3
+), g ∈ L2(R4

+)

I(f) · I(g)

=
∫
f(t1, t2, t3)dS(t1)dS(t2)dS(t3) ·

∫
g(s1, s2, s3, s4)dS(s1) . . . dS(s4)

=©©© | ©©©©

=©©©©©©©+©©◦ ◦©©©

+©◦ ◦ ◦ ◦©©+ ◦ ◦ ◦ ◦ ◦ ◦©

= I(f 0
_ g) + I(f 1

_ g) + I(f 2
_ g) + I(f 3

_ g)



∫
1[0,1](t)dS(t) = S(1)− S(0) = S semicircular variable

What is

Un :=
∫

1[0,1]n(t1, . . . , tn)dS(t1) · · · dS(tn)

We have

S · Un =© | ©© · · ·© =©©©· · · ©+ ◦ ◦© · · ·©

= Un+1 + Un−1

Thus

S · Un = Un+1 + Un−1 recursion for Chebycheff polynomials

U1 = S, U2 = S2 − 1, U3 = S3 − 2S, . . .



Note

Un = Sn + smaller degree polynomial

In this special case, Haagerup inequality is saying that

‖Sn‖ = 2n

is reduced to

‖Un‖ = n+ 1

For example,

‖S‖ = 2, ‖S2‖ = 4, ‖S3‖ = 8

‖S‖ = 2, ‖S2 − 1‖ = 3, ‖S3 − 2S‖ = 4



Note

Un = Sn + smaller degree polynomial

In this special case, Haagerup inequality is saying that

‖Sn‖ = 2n

is reduced to

‖Un‖ = n+ 1

For example,

‖S‖ = 2, ‖S2‖ = 4, ‖S3‖ = 8

‖S‖ = 2, ‖S2 − 1‖ = 3, ‖S3 − 2S‖ = 4

This follows here from

‖Un‖ = sup
|t|≤2

|Un(t)| Un(cos θ) =
sin(n+ 1)θ

sin θ



Compare to classical analogue∫
1[0,1](t)dB(t) = B(1)−B(0) = N normal variable

Hn :=
∫

1[0,1]n(t1, . . . , tn)dB(t1) · · · dB(tn)

We have

N ·Hn =© | ©© · · ·©

=©©©· · · ©+ ◦ ◦© · · · ©+ ◦© ◦ · · · ©+ ◦©© · · · ◦

= Hn+1 + nHn−1

N ·Hn = Hn+1 + nHn−1 recursion for Hermite polynomials

H1 = N, H2 = N2 − 1, H3 = N3 − 3N, . . .



Note that for n ≥ 1:

ϕ[I(f)] =
∫
f(t1, . . . , tn)ϕ[dS(t1) · · · dS(tn)] = 0

Thus, for fi ∈ L2(Rni+)

ϕ[I(f1) · · · I(fr)] = only terms with total contractions

=
∑

π∈NC2(n1⊗···⊗nr)

∫
π
f1 ⊗ · · · ⊗ fr



Example: I(f1)I(f2)I(f3)I(f4)I(f5) with

(n1, n2, n3, n4, n5) = (4,3,1,2,2)

The first picture contributes in the classical case, but not in the
free case. The other two pictures contribute here.

More general: all π ∈ NC(n1 + · · ·+ nr) contribute with

π ∧ {[n1], [n1, n1 + n2], . . . } = 0



In particular, we have for f, g ∈ L2(Rn+)

ϕ[I(f)I(g)∗]

=
∫
f(t1, . . . , fn)ḡ(s1, . . . , sn)ϕ[dS(t1) . . . dS(tn) · dS(sn) . . . dS(s1)]

=
∫
f(t1, . . . , tn)ḡ(t1, . . . , tn)dt1 . . . dtn

= 〈f, g〉L2(Rn+)

and for f ∈ L2(Rn+) and g ∈ L2(Rm+) with n 6= m

ϕ[I(g)I(g)∗] = 0

or more general, for f, g ∈
⊕∞
n=0L

2(Rn+)

ϕ[I(f)I(g)∗] = 〈f, g〉



Free Chaos Decomposition

One has the canonical isomorphism

L2({S(t) | t ≥ 0}) =̂
∞⊕
n=0

L2(Rn+), f =̂
∞⊕
n=0

fn,

via

f =
∞∑
n=0

I(fn) =
∞∑
n=0

∫
· · ·

∫
fn(t1, . . . , tn)dS(t1) . . . dS(tn).

The set

{I(fn) | fn ∈ L2(Rn+)}

is called n-th (Wigner) chaos.



Theorem [Kemp, Nourdin, Peccati, Speicher 2012]: Con-

sider, for fixed n, a sequence f1, f2, · · · ∈ L2(Rn+) with f∗k = fk
and ‖fk‖2 = 1 for all k ∈ N. Then the following statements are

equivalent.

(i) We have limk→∞ϕ[I(fk)4] = 2.

(ii) We have for all p = 1,2, . . . , n− 1 that

lim
k→∞

fk
p
_ fk = 0 in L2(R2n−2p

+ ).

(iii) The selfadjoint variable I(fk) converges in distribution to a

semicircular variable of variance 1.



Corollary: For n ≥ 2 and f ∈ L2(Rn+), the law of I(f) is not

semicircular

Thus for n 6= 2

{distributions in first chaos} ∩ {distribution in n-th chaos} = ∅

The more general question for n 6= m

{distributions in m-th chaos}∩{distribution in n-th chaos} =???

is still open.

[For the classical case one knows that all Wiener chaoses have

disjoint distributions.]



Idea of proof of 4th moment theorem

• I(fk)→ s implies ϕ[I(fk)4]→ ϕ[s4] = 2 is clear

• for the other direction first show: convergence of fourth mo-

ment implies vanishing of non-trivial contractions

• then show: if non-trivial contractions are zero, then all mo-

ments calculate as the moments for a semicircular



Vanishing of contractions

I(f)∗ = I(f∗) where f∗(t1, . . . , fn) := f(tn, . . . , t1)

Then

I(f)I(f∗) =
n∑

p=0

I(f
p
_ f∗)

Note: f
p
_ f∗ ∈ L2(R2n−2p

+ ), thus terms for different p are or-
thogonal in L2 and thus

ϕ[|I(f)|4] = ϕ[(I(f)I(f∗))2] =
n∑

p=0

ϕ[I(f
p
_ f∗)2]



But for the two trivial contractions p = 0 and p = n we have

I(f 0
_ f∗) = I(f⊗f∗), thus ϕ[I(f 0

_ f∗)2] = ‖f⊗f∗‖2
L2 = 1

and

f
n
_ f∗ = ‖f‖2 = 1, thus ϕ[I(f n

_ f∗)2] = 1

and so

ϕ[|I(f)|4] =
n∑

p=0

ϕ[I(f
p
_ f∗)2] = 2 +

n−1∑
p=1

ϕ[I(f
p
_ f∗)2]

Thus: if ϕ[|I(f)|4] = 2, then

f
p
_ f∗ = 0 for all p = 1, . . . , n− 1

[Note: all this cannot happen for one f if n > 1, but all arguments
are also valid in the limit k →∞ for sequences fk]
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Calculation of higher moments

The vanishing of non-trivial contractions implies that in the cal-

culation of

ϕ[I(f)r] =
∑

π∈NC2(n⊗r)

∫
π
f⊗r

contractions between p arguments of two of the involved f must

be trivial, i.e, either no contractions at all (p = 0), or a total

contraction (p = n)

But such contractions are in bijection with non-crossing pairings

of r elements, i.e., we get

ϕ[I(f)r] = #NC2(r) = ϕ(sr)

�



Results on Regularity of Distributions

Theorem [Shlyakhtenko, Skoufranis 2013; Mai, Speicher,

Weber 2014]: Let p be a non-constant selfadjoint polyno-

mial and s1, . . . , sn free semicirculars. Then the distribution of

p(s1, . . . , sn) does not have atoms.

Theorem [Mai 2015]: The distribution of a non-constant finite

selfadjoint Wigner integral

n∑
k=1

∫
fk(t1, . . . , tk)dS(t1, ) · · · dS(tk)

does not have atoms.



Idea of Proofs

The results of Mai, Speicher, Weber rely on having a calculus of
non-commutative derivatives for our polynomials:

• having atoms for some polynomials implies by differentiation
that one also has atoms for the derivative

• but then, by iteration, one should have atoms for linear poly-
nomials

• which is not the case

The result of Mai on stochastic integrals relies on a version of
such a differential calculus in the setting of stochastic integrals
... this is the free Malliavin calculus



Some literature on free stochastic analysis

Biane, Speicher: Stochastic Calculus with Respect to Free Brow-

nian Motion and Analysis on Wigner Space. Prob. Theory Rel.

Fields, 1998

Kemp, Nourdin, Peccati, Speicher: Wigner Chaos and the

Fourth Moment. Ann. Prob., 2012

Nourdin, Peccati, Speicher: Multidimensional Semicircular Lim-

its on the Free Wigner Chaos. Seminar on Stochastic Analysis,

Random Fields and Applications VII, 2013



Afterword on Quantitative Estimates ...

Given two self-adjoint random variables X,Y , define the distance

dC2
(X,Y ) := sup{|ϕ[h(X)]− ϕ[h(Y )]| : I2(h) ≤ 1};

where

I2(h) =̂ ‖∂h′‖ and ∂Xn =
n−1∑
k=0

Xk ⊗Xn−1−k

Rigorously: If h is the Fourier transform of a complex measure
ν on R,

h(x) = ν̂(x) =
∫
R
eixξ ν(dξ)

then we define

I2(h) =
∫
R
ξ2 |ν|(dξ)
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... in Terms of the Free Gradient Operator

Define the free Malliavin gradient operator by

∇t
(∫

f(t1, . . . , tn) dSt1 · · · dStn
)

:=
n∑

k=1

∫
f(t1, . . . , tk−1, t, tk+1, . . . , tn)

dSt1 · · · dStk−1 ⊗ dStk+1 · · · dStn

Theorem (Kemp, Nourdin, Peccati, Speicher):

dC2
(F, S) ≤

1

2
ϕ⊗ ϕ

(∣∣∣∣∫ ∇s(N−1F )](∇sF )∗ ds− 1⊗ 1
∣∣∣∣)

But no estimate against Fourth Moment in this case!
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In the classical case one can estimate the corresponding expres-
sion of the above gradient, for F living in some n-th chaos, in
terms of the fourth moment of the considered variable, thus
giving a quantitative estimate for the distance between the con-
sidered variable (from a fixed chaos) and a normal variable in
terms of the difference between their fourth moments. In the
free case such a general estimate does not seem to exist; at the
moment we are only able to do this for elements F from the
second chaos.

Corollary: Let F = I(f) = I(f)∗ (f ∈ L2(R2
+)) be an element

from the second chaos with variance 1, i.e., ‖f‖2 = 1, and let S
be a semiciruclar variable with mean 0 and variance 1. Then we
have

dC2
(F, S) ≤

1

2

√
3

2

√
ϕ(F4)− 2.
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